I want to classify the abelian groups of the form
\begin{align} \mathbb{Z}\times \mathbb{Z} \times \mathbb{Z} / \langle (n,n,n) \rangle \end{align} using fundamental theorem of finitely generated abelian groups.
From my previous post Classifying $ \frac{\mathbb{Z} \times\mathbb{Z}}{\langle(n,n)\rangle}$ via fundamental theorem of finitely generated abelian groups, I understand for $\mathbb{Z}\times \mathbb{Z} / \langle (n,n) \rangle \simeq \mathbb{Z} \times \mathbb{Z}_n$.
The easy way to see this is by considering its generators. $\mathbb{Z} \times \mathbb{Z} = \langle (1,1), (1,0) \rangle$ and moding out $n(1,1)$ I have the above expression.
Is the same procedure can apply for higher rank case? I mean generalization of $\mathbb{Z}^k$ mod by group generated by $n(1,\cdots, 1)$?
For $k=3$, $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} = \langle (1,1,1),(1,1,0),(1,0,1)\rangle $ and in this time I cannot mod $(1,1,1)$ freely....