I am trying to classify, $\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(n,n)\rangle}$, $n=1,2,3,\cdots, $ using fundamental theorem of finitely generated abelian groups.
Inspire by @user134824 in Classifying the factor group $(\mathbb{Z} \times \mathbb{Z})/\langle (2, 2) \rangle$, I construct $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}_n$ by $(k,l) \mapsto (k-l,l)$. Then its kernel is $\langle(n,n)\rangle$ and from the 1st isomorphism theorem, $\mathbb{Z} \times \mathbb{Z} \simeq \mathbb{Z}_n \times \mathbb{Z}$.
But how I can understand this from the fundamental theorem of finitely generated abelian groups?