Question: Let $V$ be a vector space of $2\times 2$ matrices over a field $F$. Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\in V$ and let $T:V\rightarrow V$ be a linear transformation defined by $T(X)=A(X)$. Compute $\det(T)$.
My thoughts: So, $\det(A)=ad-bc$ (not sure if this will help). Let's take a $2\times 2$ matrix $X=\begin{bmatrix} e & f \\ g & h \end{bmatrix}$, and compute $AX$. So, $AX=\begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}$. So, since $T(x)=AX$, then wouldn't the determinant of $T(x)$ just be $(cf+dh)(ae+bg)-(ce+dg)(af+bh)$?