2

I want to compute the Matrix $A^{19}$ where

$$A = \begin{pmatrix} 6&1&0\\0&6&1\\0&0&6\end{pmatrix}$$

Since the only eigenvalue of the matrix is 6, it's not diagonalizable. How do you proceed to calculate the exponent matrix of A then?

Jean-Claude Arbaut
  • 23,601
  • 7
  • 53
  • 88
OLGJ
  • 153

2 Answers2

5

Let$$B=\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}.$$Then $A=6\operatorname{Id}_3+B$. Besides, $6\operatorname{Id}_3$ and $B$ commute, and therefore\begin{align}A^{19}&=(6\operatorname{Id}_3+B)^{19}\\&=6^{19}\operatorname{Id}_3+19\times6^{18}B+\binom{19}26^{17}B^2\\&=\begin{bmatrix}6^{19}&19\times 6^{18}&\binom{19}26^{17}\\0&6^{19}&19\times6^{18}\\0&0&6^{19}\end{bmatrix},\end{align}since $B^n=0$ when $n>2$.

1

$ A = \begin{bmatrix} 6 && 1 && 0 \\ 0 && 6 && 1 \\ 0 && 0 && 6 \end{bmatrix} $

We can express $A^n$ as follows:

$A^n = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 $

The above equation is satisfied by $\lambda = 6$, i.e.

$\lambda^n = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 $

And since it is a repeated eigenvalue, we use derivatives of this last equation to obtain independent equations in the three unknowns $\alpha_0, \alpha_1, \alpha_2$, so we have

$ n \lambda^{n-1} = \alpha_1 + 2 \alpha_2 \lambda $

and

$ n(n-1) \lambda^{n-2} = 2 \alpha_2 $

Solving the above three equations for $\alpha_0, \alpha_1, \alpha_2$, we can evaluate the matrix $A^n$.

We have,

$\alpha_2 = (19)(9) (6)^{17} $

$\alpha_1 = 19 (6)^{18} - (19)(18) 6^{18} = - 323 (6)^{18}$

$\alpha_0 = (6)^{19} + (323) 6^{19} - (19)(9) 6^{19} = 153 (6)^{19}$

and we have

$A^2 = \begin{bmatrix} 6^2 && 12 && 2 \\ 0 && 6^2 && 12 \\ 0 && 0 && 6^2 \end{bmatrix} $

Putting it all together we can find the entries of $A^{19}$

$A^{19} = 153 (6)^{19} \begin{bmatrix} 1 && 0 && 0 \\ 0 && 1 && 0 \\ 0 && 0 && 1 \end{bmatrix} - 323 (6)^{18} \begin{bmatrix} 6 && 1 && 0 \\ 0 && 6 && 1 \\ 0 && 0 && 6 \end{bmatrix} + 171 (6)^{17} \begin{bmatrix} 6^2 && 12 && 2 \\ 0 && 6^2 && 12 \\ 0 && 0 && 6^2 \end{bmatrix} $

Which reduces to,

$A^{19} = \begin{bmatrix} 6^{19} && 19(6)^{18} && 57(6)^{18} \\ 0 && 6^{19} && 19 (6)^{18} \\ 0 && 0 && 6^{19} \end{bmatrix} $