How can you easily calculate $$\mathbb{E}\left(\max\left(0,W_{1}\right)\mid\mathcal{F}_{t}\right)\;\;\;t\in\left[0,1\right],$$ where $W$ denotes a Wiener process in its natural filtration: $\mathcal{F}$?
I did this so far, but I can't continue...
$$\mathbb{E}\left(\max\left(0,W_{1}\right)\mid\mathcal{F}_{t}\right)=\mathbb{E}\left(\max\left(0,W_{1}-W_{t}+W_{t}\right)\mid\mathcal{F}_{t}\right)=...$$ where $W_{1}-W_{t}$ is independent from $\mathcal{F}_{t}$, however $W_{t}$ is $\mathcal{F}_{t}$ measurable. So $$...=\left.\mathbb{E}\left(\max\left(0,W_{1}-W_{t}+x\right)\right)\right|_{x=W_{t}},$$ but I can't calculate $\mathbb{E}\left(\max\left(0,W_{1}-W_{t}+x\right)\right)$. $$\begin{aligned} \mathbb{E}\left(\max\left(0,W_{1}-W_{t}+x\right)\right) & =\mathbb{E}\left(\max\left(0,N\left(x,1-t\right)\right)\right)= \\&=\int_{-\infty}^{\infty}\max\left(0,y\right)\cdot\frac{1}{\sqrt{2\pi\left(1-t\right)}}\exp\left\{ -\frac{\left(y-x\right)^{2}}{2\left(1-t\right)}\right\} dy=\\ &=\int_{0}^{\infty}y\cdot\frac{1}{\sqrt{2\pi\left(1-t\right)}}\exp\left\{ -\frac{\left(y-x\right)^{2}}{2\left(1-t\right)}\right\} dy=? \end{aligned}$$ Unfortunatelly I can't calculate the last integral. Is there any tip? I have seen this page: First approximation of the expected value of the positive part of a random variable, but to be honest it didn't really help.