Suppose we have $X_{n} \overset{p}{\to} X$ Then, $$ \int_{\Omega} \vert X_{n}-X\vert^{2} = \int_{\Omega} \vert X_{n}-X\vert^{2} \mathbb{1}_{\vert X_{n}-X\vert > \epsilon} + \int_{\Omega} \vert X_{n}-X\vert^{2} \mathbb{1}_{\vert X_{n}-X\vert \leq \epsilon} \\ < \int_{\Omega} \vert X_{n}-X\vert^{2} \mathbb{1}_{\vert X_{n}-X\vert > \epsilon}+\epsilon^{2}\int_{\Omega} \mathbb{1}_{\vert X_{n}-X\vert \leq \epsilon} \\ < \int_{\Omega} \vert X_{n}-X\vert^{2} \mathbb{1}_{\vert X_{n}-X\vert > \epsilon} + \epsilon^{2} $$
Does it not then follow that since $\lim_{n} P(\vert X_{n}-X\vert > \epsilon)=0$ that the first integral of the last line converges to 0 in the limit? Since the limit of sets is of probability 0, it follows that the limit of integral is 0 as well?