Hello I need to show one identity and one limit. I am having problems with it.
notation:
$x_i$ is i-th coordinate of $x$
$B(x,r)$ ball with center $x$ and radius $r$
$S(x,r)$ sphere with center $x$ and radius $r$
$n_y$ in integral it means unit outer normal at point $y$
$dS_y$ standard surface measure with $y$ as integration variable
Let $\partial M$ be closed surface in $\mathbb{R}^3$. Than show that this identity hold $$ x_i = \frac{\int_{\partial M} \frac{y_i}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y}{\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y} $$ And let $f$ be continuous function defined only on $\partial M$. Than show that $g$ is continuous in $\overline{M}$. Where $g$ is: $$ g(x) = \frac{\int_{\partial M} \frac{f(y)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y}{\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y} $$
Reference where I got this problem. I'm reading this paper where they define function $g$ and they just comment that is continuous because $\frac{1}{\| y-x \|}$ goes to infinity as $y$ approaches $x$.
Plus they wrote down those integrals in very funny way which I do not completely understand. I am having problems when the surface $\partial M$(they denote it $P$) is not strictly convex. But that is not that important.
Ok so the first identity. It is more convinient to write it in this form:
$$ \int_{\partial M} \frac{y_i-x_i}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y = 0$$
Intuitively this part: $n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y$ is $dS_y$ projected onto sphere of unit radius and center $x$ and $\frac{y_i-x_i}{||y-x||}$ is just outer normal of that sphere.
So the integral is almost this: $\int_{S(x,1)}n_y dS_y$ which is zero. But problem is that in original integral you run over some places multiple times and even in reverse orientation.
The only problem with $g$ is to show that it is continuous on the boundary $\partial M$. So we deal with limit:
$$ \lim_{x \rightarrow x_0, x\in M} \frac{\int_{\partial M} \frac{f(y)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y}{\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y} \overset{?}{=} f(x_0) $$
Which we can rewrite as:
$$ \lim_{x \rightarrow x_0, x\in M} \frac{\int_{\partial M} \frac{f(y)-f(x_0)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y}{\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y} \overset{?}{=} 0 $$
What I try: For give $\epsilon$ I take $\delta$ that $|x_0-y|<\delta \Rightarrow |f(x_0)-f(y)|<\epsilon$
Then I split the integral:
$$\left| \frac{\int_{\partial M\setminus B(x_0,\delta)} \frac{f(y)-f(x_0)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y + \int_{\partial M \cap B(x_0,\delta)} \frac{f(y)-f(x_0)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y }{\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y} \right| \leq $$
$$ \frac{ \left| \int_{\partial M\setminus B(x_0,\delta)} \frac{f(y)-f(x_0)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y \right| + \left|\int_{\partial M \cap B(x_0,\delta)} \frac{f(y)-f(x_0)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y \right| }{ \left|\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y \right|} \leq $$
$$ \frac{ \left| \int_{\partial M\setminus B(x_0,\delta)} \frac{f(y)-f(x_0)}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y \right| }{ \left|\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y \right|} + \epsilon $$
But I can't find any bound for the second part. I'm probably doing it completely wrong. Maybe even this inequality I used is wrong.
$$ \frac{ \int_{\partial M \cap B(x_0,\delta)} \left| \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} \right| dS_y }{ \left|\int_{\partial M} \frac{1}{||y-x||} n_y \cdot \nabla_y \frac{1}{||y-x||} dS_y \right|} \leq 1 $$
The can maybe go something terribly wrong with the surface $\partial M$ so this inequality fails. I don't know. Any help would be very much appreciated.