It seems we have :
Define $\displaystyle f(x)=\sum_{k=1}^{2n}x^{k^2}$ where $n\geq 1$ a natural number and $-1\leq x\leq 1$
Claim :
$f''(x)\geq 0$
My attempt :
The case $n=1$ is trivial . So I have tried to show by induction but it doesn't works because the the sum of the two last terms have a negative second derivative on $(-1+\varepsilon_n,0)$ and $\varepsilon_n>0$.
Edit the case $n=2$ :
Using Jensen's definition and factoring we have :
$$ (x - y)^2 (32767 x^{14}+ 65518 x^{13} y + 98149 x^{12}y^2 + 130220 x^{11} y^3 + 160471 x^{10} y^4 + 186354 x^9 y^5 + 204229 x^8 y^6 + 210664 x^7 y^7 + 32640 x^7 + 204229 x^6 y^8 + 64128 x^6 y + 186354 x^5 y^9 + 91008 x^5 y^2 + 160471 x^4 y^{10} + 107136 x^4 y^3 + 130220 x^3 y^{11} + 107136 x^{3} y^4 + 98149 x^2 y^{12} + 91008 x^2 y^5 + 28672 x^2 + 65518 x y^{13} + 64128 x y^6 + 40960 x y + 32767 y^{14} + 32640 y^7 + 28672 y^2)\geq 0$$
For $-0.5\leq x\leq-0.4$ and $-0.5\leq y\leq-0.4$ because we have :
$$32767 x^{14}+ 65518 x^{13} y + 98149 x^{12}y^2 + 130220 x^{11} y^3 + 160471 x^{10} y^4 + 186354 x^9 y^5 + 204229 x^8 y^6 + 210664 x^7 y^7\geq 0$$
$$f(x,y)=-(32640 x^7+64128 x^6 y +91008 x^5 y^2+107136 x^4 y^3+91008 x^2 y^5+107136 x^{3} y^4 +32640 y^7+64128 x y^6)\leq f(-0.5,-0.5)<2\cdot28672\cdot0.4^2<\leq 28672(x^2+y^2)$$
Edit 2 :
It seems we can build a proof by induction playing with $x^4$ on $(-1+\varepsilon_n,0)$ and $\varepsilon_n>0$ we have something like :
$$\left(x^4C_n+\sum_{k=2}^{2n-2}x^{k^2}\right)’’\geq0$$
And :
$$\left(x^4(1-C_n)+x^{(2n-1)^2}+x^{(2n)^2}\right)''\geq 0$$
Remains to find $0<C_n<1$ a real number depending on $n$
Edit 3: It seems we can take $C_n=\frac{\left(n\right)!-1}{n!}$ always on $(-1+\varepsilon_n,0)$ and $\varepsilon_n>0$ .
How to show it ?
