I've written the following proof for the product rule for limits. Here $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$. While it works, I find it to be clunky and I can't shake the feeling that we somehow can reduce the general case to the much (in my opinion) cleaner proof of the special case where $L = M = 0$. Anyhow, here is the proof:
Suppose first that $L = M = 0$. Fix an arbitrary $\varepsilon > 0$ and let $\delta_1$ and $\delta_2$ be such that $f(x)$ and $g(x)$ are in a $\sqrt{\varepsilon}$ neighborhood of $0$, respectively. Choose $\delta = \min(\delta_1, \delta_2)$. Then when $|x-c| < \delta$ we have $$ |f(x)g(x)| = |f(x)||g(x)| < \left(\sqrt{\varepsilon}\right)^2 = \varepsilon. $$
Suppose instead $M \neq 0$. Fix an arbitrary $\varepsilon > 0$ and let $\delta_1$ be such that it satisfies $|f(x) - L| < \varepsilon_1 = \frac{\varepsilon}{3|M|}$. Moreover, let $\delta_2$ be such that it satisfies $|g(x) - M| < \varepsilon_2 = \min(\frac{\varepsilon}{3\varepsilon_1}, \frac{\varepsilon}{3|L|})$ where $\frac{\varepsilon}{3|L|} = \infty$ if $L = 0$. Choose $\delta = \min(\delta_1, \delta_2)$. Then if $|x - c| < \delta$, we have \begin{align*} |f(x)g(x) - LM| &= |f(x)g(x) - Lg(x) + Lg(x) - LM| \\ &= |g(x)(f(x) - L) + L(g(x) - M)| \\ &\leq |g(x)||(f(x) - L)| + |L||(g(x) - M)| \\ &\leq |M \pm \varepsilon_2|\varepsilon_1 + |L|\varepsilon_2 \\ &\leq |M|\varepsilon_1 + \varepsilon_1\varepsilon_2 + |L|\varepsilon_2 \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon. \end{align*}