By definition, a function $f: U\rightarrow \mathbb R$ defined on an open set $U\subset \mathbb R^n$ is differentiable at $a\in U$ if there is a linear transformation $df_a: \mathbb R^n\rightarrow \mathbb R$ such that
$$\lim_{x\to a} \frac{f(x)-f(a)-df_a(x-a)}{|x-a|}=0.$$
Using this definition I'd like to show that if $f, g: U\rightarrow \mathbb R$ is differentiable at $a\in U$, then $f\cdot g: U\rightarrow \mathbb R$ is also differentiable at $a$ and
$$d(f\cdot g)_a=f(a)\cdot dg_a+df_a\cdot g(a).$$
I thought I should do something like:
\begin{align*} (f\cdot g)(x)&-(f\cdot g)(a)-(f(a)\cdot dg_a(x-a)+df_a(x-a)\cdot g(a))&\\ &=f(x)\cdot g(x)-f(a)\cdot g(a)-f(a)\cdot dg_a(x-a)-df_a(x-a)\cdot g(a)\tag{1}\\ &= {\color{red}{f(x)\cdot g(x)}}-{\color{red}{f(a)\cdot g(x)}}+{\color{green}{f(a)\cdot g(x)}}\\ &-{\color{green}{f(a)\cdot g(a)}}-{\color{green}{f(a)\cdot dg_a(x-a)}}-df_a(x-a)\cdot g(a)\\ &+df_a(x-a)\cdot g(x)-{\color{red}{df_a(x-a)\cdot g(x)}}\\ &={\color{red}{[f(x)-f(a)-df_a(x-a)]\cdot g(x)}}+{\color{green}{f(a)\cdot [g(x)-g(a)-dg_a(x-a)]}}\\ &+df_a(x-a)\cdot (g(x)-g(a)). \end{align*} The problem is the term $df_a(x-a)\cdot (g(x)-g(a))$ which I can't get rid off.
I feel that if I add and subtract the right terms in the line $(1)$ it will be straightforward but I still haven't found those terms.
Any tips?
Thanks.
Remark. I could finish the proof as follows:
$$\frac{df_a(x-a)}{|x-a|}=df_a\left(\frac{x-a}{|x-a|}\right)\leq \max_{|v|=1}df_a(v),$$ implies
$$\lim_{x\to a} \frac{df_a(x-a)}{|x-a|}\cdot (g(x)-g(a))=0$$
since $g(x)\to g(a)$ and $x\mapsto \frac{df_a(x-a)}{|x-a|}$ is bounded. Hence:
Hence:
\begin{align*} &\lim_{x\to a} \frac{(fg)(x)-(fg)(a)-f(a)dg_a(x-a)-df_a(x-a)g(a)}{|x-a|}\\ &=\lim_{x\to a} \frac{f(x)-f(a)-df_a(x-a)}{|x-a|}\lim_{x\to a} g(x)+f(a)\lim_{x\to a} \frac{g(x)-g(a)-dg_a(x-a)}{|x-a|}+\lim_{x\to a}\frac{df_a(x-a)}{|x-a|}\cdot [g(x)-g(a)]=0. \end{align*}