Given $A\in\mathbb{C}^{n\times n}$, such that it has singular values larger than $1$ and smaller than $1$,
\begin{array}{ll} \underset{x\in\mathbb{C^n}}{\text{minimize}} & x^*(A+A^*)x.\\ \text{subject to} & x^*A^*Ax=1,\\&x^*x=1\end{array}
My attempt: I couldn't get anything done for general $A$. Assume $A$ is hermitian, then $A=U\Sigma U^*$, where $U$ is unitary and $\Sigma$ is real diagonal. Let $y=U^*x$, then
\begin{array}{ll} \underset{y\in\mathbb{C^n}}{\text{minimize}} & 2y^*\Sigma y.\\ \text{subject to} & y^*\Sigma^2y=1,\\&y^*y=1\end{array}
Using Lagrange multiplier, we can find: $L(y,\lambda_1,\lambda_2)=2y^*\Sigma y-\lambda_1(y^*\Sigma^2y-1)-\lambda_2(y^*y-1)$. Then
\begin{align} &\frac{\partial L(y,\lambda_1,\lambda_2)}{\partial y}=4\Sigma y-2\lambda_1\Sigma^2y-2\lambda_2y=0 \end{align}
gives us $y_i=0$ or $\lambda_1\sigma_i^2-2\sigma_i+\lambda_2=0$ for all $i=1,2,\ldots,n.$
From $\lambda_1\sigma_i^2-2\sigma_i+\lambda_2=0$, we can get $\sigma_i=\frac{1\pm\sqrt{1-\lambda_1\lambda_2}}{\lambda_1}$, so here I think that if there are many distinct $\sigma_i$'s, then we will get $\sigma_{j_1}=\frac{1+\sqrt{1-\lambda_1\lambda_2}}{\lambda_1}$, $\sigma_{j_2}=\frac{1-\sqrt{1-\lambda_1\lambda_2}}{\lambda_1}$ (here $j_i$ is any number from $1$ to $n$), and $y_k=0$ for all $k\neq j_2$ and $k\neq j_1$.
From $\sigma_{j_1}=\frac{1+\sqrt{1-\lambda_1\lambda_2}}{\lambda_1}$, $\sigma_{j_2}=\frac{1-\sqrt{1-\lambda_1\lambda_2}}{\lambda_1}$, we can find that $\lambda_1=\frac{2}{\sigma_{j_1}+\sigma_{j_2}}$ and $\lambda_2=\frac{2\sigma_{j_1}\sigma_{j_2}}{\sigma_{j_1}+\sigma_{j_2}}$.
From this observations, I got impression that for Hermitian $A$, original problem is equivalent to
\begin{array}{ll} \underset{y\in\mathbb{C^2}}{\text{minimize}} & 2y^*\begin{bmatrix} \sigma_{j_1} & \\ & \sigma_{j_2} \end{bmatrix} y\quad=\quad\underset{\sigma_{j_1},\sigma_{j_2}}{\text{minimize}} &\sigma_{j_1}\sqrt{\frac{1-\sigma_{j_2}^2}{\sigma_{j_1}^2-\sigma_{j_2}^2}}+\sigma_{j_2}\sqrt{\frac{\sigma_{j_1}^2-1}{\sigma_{j_1}^2-\sigma_{j_2}^2}}\\ \text{subject to} & y^*\begin{bmatrix} \sigma_{j_1} & \\ & \sigma_{j_2} \end{bmatrix}^2y=1,&\sigma_{j_1}>1\\&y^*y=1&\sigma_{j_2}<1\end{array}
when $y_1=\sqrt{\frac{1-\sigma_{j_2}^2}{\sigma_{j_1}^2-\sigma_{j_2}^2}}$ and $y_2=\sqrt{\frac{\sigma_{j_1}^2-1}{\sigma_{j_1}^2-\sigma_{j_2}^2}}$.
Can you please tell me if the above calculations make sense? Any help on solving (analytically or numerically) the original problem for general $A$ would be appreciated.