Find $x$ in degrees if $\cot(x)=\csc(12^{\circ})-\sqrt{3}$
My attempt: $$\cot (x)=\frac{1}{\sin (12^{\circ})}-2 \sin \left(60^{\circ}\right)$$ $$\Rightarrow \cot x=\frac{1-2 \sin (12^{\circ}) \sin (60^{\circ})}{\sin \left(12^{\circ}\right)}$$
$$\Rightarrow \cot x=\frac{1-\cos 48^{\circ}+\cos 72^{\circ}}{\sin \left(12^{\circ}\right)}$$
Now let $, \theta=12^{\circ},s=\sin(\theta)$, then we get $$\cot x=\frac{1-\cos (4 \theta)+\cos (6\theta)}{\sin (\theta)}$$
Converting to rational function in $s$, we get $$\cot x=\frac{-32 s^{6}+40 s^{4}-10 s^{2}+1}{s}$$