(1) Take a look at matrices where one entry is $1$ and all other are $0$. For $n=3$ take e.g. $A=(a_{i,j})$ with $a_{1,2} = 1$ and $a_{i,j} = 0$ for $(i,j)\neq (1,2)$. Then take $B=(b_{i,j})$ with $b_{2,1}=1$ and $b_{i,j}=0$ for $(i,j)\neq (2,1)$.
Multiplying those matrices results in
$$
(AB)_{i,j} = \begin{cases}
1, \text{for } (i,j) = (1,1) \\
0 \text{ otherwise}
\end{cases}, (BA)_{i,j} = \begin{cases}
1, \text{for } (i,j) = (2,2) \\
0 \text{ otherwise}
\end{cases}
$$
Thus we have $AB \neq BA$. Can you generalize that for general $n$? Note that $AB=BA$ for all $A,B\in\mathbb{R}^{1\times 1}$, so one can specify those matrices only for $n>1$.
(2) You can write matrices $A,B\in\mathbb{R}^{2\times 2}$ as
$A = \left( \begin{array} & a & b \\ c & d \end{array} \right), B = \left( \begin{array} & e & f \\ g & h \end{array} \right)$. Now you can multiply those matrices with general values and compare each entry:
$$
AB = \left(\begin{array}&ae+bg & af+bh \\ ce+dg & cf+dh \end{array}\right) \overset{!}{=} \left(\begin{array}&ea+fc & eb+fd \\ ga+hc & gb+hd\end{array}\right) = BA
$$
Now you're searching for all matrices that satisfy above equation for all matrices $B$, so for arbitrary $e,f,g,h$.
In detail: $(AB)_{1,1}=(BA)_{1,1}$ gives us $ae+bg = ea+fc$ which is equivalent to $bg=fc$. To make this equation hold for arbitrary $f,g$ we need $b=c=0$. The entry $(1,2)$ yields (using $b=0$) $af=df$ which means that we need $a=d$ to make this true for arbitrary $f$. Looking at the other two entries doesn't give us new conditions, this means we get
$$
M = Z(\mathbb{R}^{2\times 2}) = \mathbb{R}\cdot I_2 = \left\{\left(\begin{array} & \lambda & 0 \\ 0 & \lambda \end{array} \right):\lambda \in \mathbb{R}\right\}
$$
so the center of $\mathbb{R}^{2 \times 2}$ are all multiples of the identity matrix. ($Z(.)$ denotes the center, $I_2$ the identity matrix of size $2\times2$)