For two nonnegative independent r.v.'s, $X,Y$, with the same distribution and finite second moment, I'm trying to show that $Var[\min(X,Y)]\leqslant Var[X]$.
Attempt 1. For the continuous case, I've written the first and second moments of $\min(X,Y)$ in terms of $X$ but have no idea how to proceed with them. Specifically, with $Z=\min(X,Y)$, I have
$\mathbb{E}\left[Z\right]=2\mathbb{E}[X]+\int_{0}^{\infty}F^2_{X}(z)dz$,
$\mathbb{E}\left[Z^2\right]=2\mathbb{E}\left[X^{2}\right]+2\int_{0}^{\infty}zF_{X}^{2}(z)dz$,
(where $F_{X}$ is the cdf of $X$) but don't know what to do with the integrals in the RHS's of the above expressions.
Attempt 2. Noting that $\min(X,Y)=\frac{1}{2}\left(X+Y-|X-Y|\right)$, I can write
\begin{equation} \label{eq1} \begin{split} Var\left[\min(X,Y)\right] & = Var[X]-\frac{1}{4}\left(\mathbb{E}\left[\left|X-Y\right|^2\right]+4\text{Cov}\left(X,|X-Y|\right)\right), \\ \end{split} \end{equation}
but am struggling to show that the RHS's second term (1/4(...)) is less than or equal to zero.
Any suggestions about how I might proceed or confirmation these are dead-ends would be appreciated.