Let $M = \text{im} T.$ Given what you have already proven, it is enough to show that $M=(M^{\perp})^{\perp}.$ That $M\subseteq (M^{\perp})^{\perp}$ is clear, so we have left to prove that $(\ker T)^{\perp}\subseteq \text{im} T.$
Pick $x\in (\ker T)^{\perp}.$ By the Polarization identity and your condition, we have $\langle x,y\rangle \leq \langle Tx, Ty\rangle.$ Let $y\in \ker T.$ We have at least one of: $\langle Tx, y \rangle \geq 0$ or $\langle -Tx, y \rangle\geq 0.$
If the first, $\langle Tx, y \rangle \leq \langle T^2 x, Ty \rangle=0$ so $Tx\in (\ker T)^{\perp}.$ If the second, $\langle -Tx, y \rangle \leq \langle T^2(-x), Ty \rangle=0$ so $-Tx\in (\ker T)^{\perp}.$
Therefore $x-Tx \in (\ker T)^{\perp}$ but since $T$ is a projection, $x-Tx\in \ker T$ as well. Therefore $x-Tx=0$ so $x=Tx\in \text{im} T.$