Solution:
Fact 1: $|z + 1| + |z^2 + 1| \ge \sqrt{2}$ for all $z\in \mathbb{C}$,
with equality if $z = \mathrm{i}, -\mathrm{i}$.
Fact 2: Let $n \ge 2$ be a fixed integer. Then
$$|z + 1| + |z^{2n} + 1| \ge 2\sin \frac{\pi}{4n}, \ \forall z \in \mathbb{C}$$
with equality if $z = \mathrm{e}^{\mathrm{i}\frac{2n - 1}{2n}\pi}, \ \mathrm{e}^{\mathrm{i}\frac{2n + 1}{2n}\pi}$.
$\phantom{2}$
Proof of Fact 1:
(Solution due to ali3985@AoPS) We have
\begin{align*}
|z + 1| + |z^2 + 1|
&= |z + \mathrm{i} - (\mathrm{i} - 1)| + |z - \mathrm{i}|\cdot |z + \mathrm{i}|\\
&\ge |\mathrm{i} - 1|
- |z + \mathrm{i}| + |z - \mathrm{i}|\cdot |z + \mathrm{i}|\\
&= \sqrt{2} + |z + \mathrm{i}|(|z - \mathrm{i}| - 1).
\end{align*}
Also, we have
\begin{align*}
|z + 1| + |z^2 + 1|
&= |z - \mathrm{i} + (\mathrm{i} + 1)| + |z - \mathrm{i}|\cdot |z + \mathrm{i}|\\
&\ge |\mathrm{i} + 1|
- |z - \mathrm{i}| + |z - \mathrm{i}|\cdot |z + \mathrm{i}|\\
&= \sqrt{2} + |z - \mathrm{i}|(|z + \mathrm{i}| - 1).
\end{align*}
We have $|z - \mathrm{i}| + |z + \mathrm{i}|
\ge |(z - \mathrm{i}) - (z + \mathrm{i})| = 2$.
Thus, either $|z - \mathrm{i}| - 1 \ge 0$ or $|z + \mathrm{i}| - 1 \ge 0$.
We are done.
$\phantom{2}$
Proof of Fact 2:
When $|z| > 1$, we have
\begin{align*}
|z + 1| + |z^{2n} + 1| &= |z| \cdot |1/z + 1| + |z|^{2n}\cdot |1/z^{2n} + 1|\\
&\ge |1/z + 1| + |(1/z)^{2n} + 1|.
\end{align*}
Thus, we only need to prove the case when $|z| \le 1$.
We split into two cases:
- $0 \le |z| \le (3/5)^{1/n}$:
We have
\begin{align*}
f(z) &\ge 1 - |z| + 1 - |z|^{2n} \\
&\ge \frac{41}{25} - (3/5)^{1/n} \\
&\ge \frac{41}{25} - \left(1 - \frac{2}{5n}\right) \qquad\qquad (\textrm{Bernoulli inequality})\\
&> \frac{\pi}{2n} \\
&\ge 2\sin \frac{\pi}{4n}
\end{align*}
where we have used $u\ge \sin u$ for all $u \ge 0$ in the last inequality.
- $(3/5)^{1/n} < |z| \le 1$:
Let $z = r \mathrm{e}^{\mathrm{i}\theta}$ ($(3/5)^{1/n} < r \le 1$, $\theta \in [0, 2\pi]$). We have
\begin{align*}
f(z) &= \sqrt{r^2 + 1 + 2r \cos \theta} + \sqrt{r^{4n} + 1 + 2r^{2n} \cos 2n\theta}\\
&= \sqrt{(1 - r)^2 + 2r(1 + \cos \theta)} + \sqrt{(1 - r^{2n})^2 + 2r^{2n}(1 + \cos 2n\theta)} \\
&\ge \sqrt{2r(1 + \cos \theta)} + \frac{1}{\sqrt{2}}
\left(1 - r^{2n} + \sqrt{2}\, r^n\sqrt{1 + \cos 2n\theta}\right) \tag{1}\\
&= \sqrt{2r(1 + \cos \theta)} + \frac{1 - r^{2n}}{\sqrt{2}} +
r^n\sqrt{1 + \cos 2n\theta}\\
&\ge \sqrt{2r(1 + \cos \theta)} + \frac{3(1 - \sqrt r)}{\sqrt{2}} +
\frac35 \sqrt{1 + \cos 2n\theta} \tag{2}\\
&= - \left(\frac{3}{\sqrt{2}} - \sqrt{2(1 + \cos \theta)}\right)\sqrt{r} + \frac{3}{\sqrt{2}} + \frac{3}{5} \cdot\sqrt{1 + \cos 2n\theta}\\
&\ge - \left(\frac{3}{\sqrt{2}} - \sqrt{2(1 + \cos \theta)}\right) + \frac{3}{\sqrt{2}} + \frac{3}{5} \cdot\sqrt{1 + \cos 2n\theta} \tag{3}\\
&= \sqrt{2(1 + \cos \theta)} + \frac{3}{5} \cdot\sqrt{1 + \cos 2n\theta}\\
&= 2|\cos (\theta/2)| + \frac{3}{5}\sqrt{2} |\cos n\theta|\\
&\ge 2|\cos (\theta/2)| + \frac{4}{5} |\cos n\theta|.
\end{align*}
Explanations:
(1): $\sqrt{a^2 + b^2} \ge \frac{a + b}{\sqrt 2}$.
(2): $1 - r^{2n} \ge 1 - r^2 = (1 - \sqrt{r})(1 + \sqrt{r})(1 + r)$
and $(1 + \sqrt{r})(1 + r)
\ge (1 + \sqrt{(3/5)^{1/2}})(1 + (3/5)^{1/2}) > 3$; and $r^n \ge \frac35$.
(3): $\frac{3}{\sqrt{2}} - \sqrt{2(1 + \cos \theta)}
\ge \frac{3}{\sqrt{2}} - \sqrt{2(1 + 1)} > 0$.
It suffices to prove that, for all $\theta\in [0, 2\pi]$,
$$2|\cos (\theta/2)| + \frac{4}{5} |\cos n\theta| \ge 2\sin \frac{\pi}{4n}.$$
WLOG, assume $\theta \in [0, \pi]$.
Then $2|\cos (\theta/2)| = 2\cos (\theta/2)$.
We only need to prove the case when $2\cos (\theta/2) \le 2\sin \frac{\pi}{4n}$
that is $\pi - \frac{\pi}{2n} \le \theta \le \pi$.
Let $\alpha = n\theta - n\pi + \pi/2 \in [0, \pi/2]$.
We have $\sin \alpha = (-1)^n \cos n\theta$ and $|\cos n\theta| = \sin \alpha$.
Also, we have $2\cos (\theta/2) = 2\sin(\frac{\pi}{4n} - \frac{\alpha}{2n})$.
It suffices to prove that, for all $\alpha \in [0, \pi/2]$,
$$2\sin\left(\frac{\pi}{4n} - \frac{\alpha}{2n}\right) + \frac{4}{5}\sin \alpha - 2\sin \frac{\pi}{4n} \ge 0$$
that is
$$\frac{4}{5}\sin \alpha \ge 4 \cos \frac{\pi - \alpha}{4n} \sin \frac{\alpha}{4n}.$$
It suffices to prove that, for all $\alpha \in [0, \pi/2]$,
$$\frac{4}{5}\sin \alpha \ge 4 \sin \frac{\alpha}{8}$$
which is true by using the well-known fact $\frac{2}{\pi}u \le \sin u
\le u$ for all $u \in [0, \pi/2]$.
We are done.