Fact 1: Let $w_1, w_2, w_3 \in \mathbb{C}$ with $|w_3| \le 1$. Then
$|1 + w_1| + |1 + w_2| + |1 + w_1 w_2 w_3|
\ge |1 + w_3|$.
(The proof is given at the end.)
Fact 2: Let $w_1, w_2, w_3 \in \mathbb{C}$ with $|w_1| \ge 1$ and $|w_2| \ge 1$. Then $|1 + w_1| + |1 + w_2| + |1 + w_1 w_2 w_3|
\ge |1 + w_3|$.
(The proof is given at the end.)
WLOG, assume that $|z_1| \le |z_2| \le \cdots \le |z_n|$.
We claim that, for each $n\ge 4$ even,
$$\sum_{k=1}^n |1 + z_k| + |1 + z_1 z_2 \cdots z_n|
\ge \sum_{k=1}^{n-2} |1 + z_k| + |1 + z_1z_2 \cdots z_{n-2}|. \tag{1}$$
Indeed, if $|z_{n-1}| \ge 1$, by Fact 2, we have
\begin{align*}
&|1 + z_{n-1}| + |1 + z_n| + |1 + z_1 z_2 \cdots z_{n-2}\cdot z_{n-1}z_n|\\
\ge\,& |1 + z_1z_2 \cdots z_{n-2}|;
\end{align*}
and if $|z_{n-1}| < 1$, using $|z_1z_2 \cdots z_{n-2}| < 1$, by Fact 1, we have
\begin{align*}
&|1 + z_{n-1}| + |1 + z_n| + |1 + z_1 z_2 \cdots z_{n-2}\cdot z_{n-1}z_n|\\
\ge\,& |1 + z_1z_2 \cdots z_{n-2}|.
\end{align*}
The claim is proved.
Now, repeating the process (1), we have
$$\sum_{k=1}^n |1 + z_k| + |1 + z_1 z_2 \cdots z_n|
\ge \cdots \ge |1 + z_1| + |1 + z_2| + |1 + z_1z_2| \ge 2.$$
Also, when $z_1 = z_2 = \cdots = z_n = -1$, we have
$\sum_{k=1}^n |1 + z_k| + |1 + z_1 z_2 \cdots z_n| = 2$.
Thus, the minimum of $\sum_{k=1}^n |1 + z_k| + |1 + z_1 z_2 \cdots z_n|$ is $2$.
Proof of Fact 1:
Use @Carl Schildkraut's idea in this answer.
If $|w_2| \ge 1$, we have
\begin{align*}
&|1 + w_1| + |1 + w_2| + |1 + w_1 w_2 w_3|\\
\ge\,& |1 + w_1| + |w_2|\, |1 - w_1w_3|\\
\ge\,& |1 + w_1| + |1 - w_1 w_3|\\
\ge\,& |w_3|\, |1 + w_1| + |1 - w_1w_3|\\
\ge\,& |1 + w_3|.
\end{align*}
If $|w_2| < 1$, we have
\begin{align*}
&|1 + w_1| + |1 + w_2| + |1 + w_1 w_2 w_3|\\
\ge\,& |w_2|\, |1 + w_1| + |1 + w_2| + |1 + w_1 w_2 w_3|\\
\ge\,& |1 - w_1w_2| + |1 + w_1 w_2 w_3|\\
\ge\,& |w_3|\, |1 - w_1w_2| + |1 + w_1 w_2 w_3|\\
\ge\,& |1 + w_3|.
\end{align*}
We are done.
Proof of Fact 2:
We have
\begin{align*}
&|1 + w_1| + |1 + w_2| + |1 + w_1w_2w_3|\\
\ge\,& |1 + w_1| + |w_2|\, |1 - w_1w_3|\\
\ge\,& |1 + w_1| + |1 - w_1w_3|\\
\ge\,& |w_1|\, | 1 + w_3|\\
\ge\,& |1 + w_3|.
\end{align*}
We are done.