It's easy when $\langle(m,n)\rangle=\langle(1,2)\rangle$
Just define the homomorphism $f\colon \mathbb{Z}\times \mathbb{Z} \to \mathbb{Z} $ by $f(a,b)=2a-b$
Then $f$ onto
And, $kerf=\langle (1,2) \rangle $
So, $\mathbb{Z}\times \mathbb{Z} / \langle (1,2) \rangle \cong \mathbb{Z}$
if $ \langle (m,n) \rangle $( where $m,n$ prime to each other)
Then , $\mathbb{Z}\times \mathbb{Z} / \langle (m,n) \rangle \cong \mathbb{Z}$
What if $ \langle (m,n) \rangle = \langle (2,2) \rangle $
What if $ \langle (m,n) \rangle = \langle (2,4) \rangle $
And others arbitrarily....
Please help.