Suppose $K$ is an algebraically closed field, and $A$ is the algebra presented by the quiver $$\require{AMScd} \begin{CD} 1 @>>> 2\\ @V{}VV @V{}VV \\ 3 @>>> 4 @>>> 5 \end{CD} $$ bound by $1\to 2\to 4 = 1\to3\to 4$ and $3\to4\to5 = 0$.
What is the projective dimension of the simple $A$-module $S(1)$?
Here is my work: the projective indecomposables have submodule lattices indicated by the following Alperin diagrams: $$\begin{array}{c@{}c@{}c@{}c@{}c} \newcommand{\kem}{\kern-1ex} \kem&\kem&\kem\kem1\kem&\kem&\kem \\ \kem&\kem\nearrow\kem&\kem&\kem\nwarrow\kem&\kem \\ 2\kem&\kem&\kem&\kem&\kem3 \\ \kem&\kem\nwarrow\kem&\kem&\kem\nearrow\kem&\kem \\ \kem&\kem&\kem\kem4\kem&\kem&\kem \end{array} \qquad \begin{array}{c} 2 \\ \uparrow \\ 4 \\ \uparrow \\ 5 \end{array} \qquad \begin{array}{c} 3 \\ \uparrow \\ 4 \\ \phantom{\uparrow} \\ \phantom{5}\end{array} \qquad \begin{array}{c} 4 \\ \uparrow \\ 5 \\ \phantom{\uparrow} \\ \phantom{5}\end{array} \qquad \begin{array}{c} 5 \\ \phantom{\uparrow} \\ \phantom{4} \\ \phantom{\uparrow} \\ \phantom{5}\end{array} $$
The projective cover of $S(1)$ is $P(1)$ and the kernel is the Heller operator of $S(1)$, namely $$\begin{array}{c@{}c@{}c@{}c@{}c} \newcommand{\kem}{\kern-1ex} 2\kem&\kem&\kem&\kem&\kem3 \\ &\kem\nwarrow\kem&\kem&\kem\nearrow\kem&\\ &\kem&\kem\kem4\kem&\kem& \end{array} $$ with $P(2) \oplus P(3)$ its projective cover.
Now the problem is to find the second Heller operator $\Omega^2(S(1))$. Its composition factors are clear: $S(4)$ and $S(5)$, but how do we know if it is $S(4) \oplus S(5)$ versus $P(4) = \begin{array}{c} 4 \\ \uparrow \\ 5 \end{array}$?
In the former case, the next projective cover is $P(5) = S(5)$ and the resolution terminates with projective dimension 3, but in the latter case the resolution terminates immediately with projective dimension 2.
The former case “uses” the 4 from $P(2)$ leaving $S(5)$ from $P(2)$ and $S(4)$ from $P(3)$. The latter case “uses” the 4 from $P(3)$ leaving the trailing $P(4)$ from $P(3)$. Neither of these is really the kernel, since it is some sort of “diagonal” submodule, but how do we know if the diagonal submodule is split or not?
Does the answer depend on the field?