Prove that $UV^T$ is the nearest orthogonal matrix to $A$ ie., $||A-Q||\geq ||A-UV^T||$ for all orthogonal matrices $Q$ given the norm of the matrix is defined as $||A||=\max_{x\neq 0}\dfrac{||Ax||}{||x||}=\sigma_1$
The SVD of $A$ is $A=U\Sigma V^T=\sum_{i=1}^{r}\sigma_i u_i v_i^T$
$$ ||A-Q||=||U\Sigma V^T-Q||=||U^T\Big(U\Sigma V^T-Q\Big)V||=||\Sigma-U^TQV||=||\Sigma-Q'|| $$
So we need to solve for $Q'$ when $||\Sigma-Q'||$ is minimized for the orthogonal matrix $Q'$.
How do I prove it ?
Note:
Similar question has been asked at Showing that matrix $Q=UV^T$ is the nearest orthogonal matrix to A., but it is for the Frobenius norm