0

Let $A, B ∈ M_{m×n}(F)$. Could someone give a hint as to how to prove that $$\operatorname{rank}(A + B) ≤ \operatorname{rank}(A) + \operatorname{rank}(B).$$

2 Answers2

5

You can view it in terms of linear maps associated to matrices. Let $f_A, f_B$ the linear maps associated to $A$ and $B$ in some fixed basis. Then, it suffices to prove that $$\operatorname{Im}(f_A+f_B)\subseteq \operatorname{Im}(f_A)+\operatorname{Im}(f_B)$$ but this is clearly true, since

$$(f_A+f_B)(x)=f_A(x)+f_B(x)\in\operatorname{Im}(f_A)+\operatorname{Im}(f_B)$$ for every vector $x$.

4

Hints:

  1. $rank(A)=\dim\,im(A)=\dim\{Ax\,\mid\,x\in F^n\}$
  2. $im(A+B)\subseteq im(A)+im(B)$
  3. $\dim(U+V)\le\dim U+\dim V$.
Berci
  • 92,013