No.
A presentation for $\Bbb Z_4\times \Bbb Z_6$ is
$$\langle a,b\mid a^4, b^6, ab=ba\rangle.\tag{1}$$
Here $a\mapsto ([1]_4,[0]_6)$ and $b\mapsto ([0]_4,[1]_6)$, so $([2]_4, [2]_6)$ corresponds to $a^2b^2$. The quotient by $\langle ([2]_4, [2]_6)\rangle$ amounts, then, to killing $a^2b^2$ in $(1)$, like so:
$$\begin{align}
\Bbb Z_4\times \Bbb Z_6/\langle ([2]_4, [2]_6)\rangle &\cong\langle a,b\mid a^2b^2, a^4, b^6, ab=ba\rangle\\
&\cong\langle a,b\mid a^2=b^{-2}, a^4, b^6, ab=ba\rangle\\
&\cong\langle a,b\mid a^2=b^{-2}, b^4, b^6, ab=ba\rangle\\
&\cong\langle a,b\mid a^2=b^2, b^2, ab=ba\rangle\\
&\cong\langle a,b\mid a^2, b^2, ab=ba\rangle\\
&\cong\Bbb Z_2\times\Bbb Z_2,
\end{align}$$
which is not cyclic.