Let $K$ and $L$ be two fields. Assume characteristics are not 2. I can show in a quite elementary way that if the statement $SL_2(K) \simeq SL_2(L) \implies K \simeq L$ holds, then for $n \geq 2$, the statement $SL_n(K) \simeq SL_n(L) \implies K \simeq L$ holds. But I do not know how to prove this for $n=2$ in its full generality. We can of course assume the groups i.e. the fields are infinite, otherwise counting the number of elements should be enough.
On the other hand by using any non-central diagonal element as a parameter, one can define the field $K$ in the group $SL_2(K)$ as follows. Let $t_0$ be one such element. Let $T=C_{SL_2(K)}(t_0) \simeq K^*$ (torus). We may regard $T$ as the group of diagonal matrices with determinant 1. There are exactly two abelian subgroups $H$ of $SL_2(K)$ of the form $\langle h^T\cup\{1\} \rangle$ for any $1\neq h \in H$ and with the property that $H \cap Z(SL_2(K))=1$ , the strictly upper and lower triangular matrices, say $U$ and $V$ (unipotent) respectively. (Because $x = (1+x/2)^2 - 1^2 - (x/2)^2$ for any $x\in K$, see below.) They are both isomorphic to the addive group of $K$. Choose one of them, say $U$. The choice does not matter as the automorphism "transpose inverse" interchanges them fixing $T$. Denote the elements of $T$ by $t(x)$ where $x\in K^*$ and elements of $U$ by $u(y)$ where $y\in K$. Then $T$ acts on $U$ as follows $u(y)^{t(x)} = u(x^2y)$. Thus we get the subfield of $K$ generated by the squares. But since $x = (1+x/2)^2 - 1^2 - (x/2)^2$ for any $x\in K$, the subfield generated by the squares is $K$ itself. Thus the field $K$ is definable with one parameter, namely $t_0$. (Except that the group does not know the unit element 1 of the field, we only get an affine version of a field; to fix 1 of the field $K$ we need one more parameter, but this is irrelevant to us). It follows that in the group $SL_2(L)$ both fields $K$ and $L$ are definable.
In particular if the automorphism takes a non-central diagonalizable element of $SL_2(K)$ to a non-central diagonalizable element of $SL_2(L)$, then we will necessarily have $K\simeq L$. This will be so if we can distinguish diagonalizable elements of $SL_2(K)$ from its non-diagonalizable semisimple elements (i.e. diagonalizable in the algebraic closure) in a group theoretic way. If $K$ and $L$ are algebraically closed, all the semisimple elements will be diagonalizable, so there will be no problem, in this case $K$ will be isomorphic to $L$.