Let $A,B$ be two Hermitian matrices. Let $\lambda_{k}(A)$ denote the $k$-th largest eigenvalue. I want to prove the following inequality.
$$ \sum_{k=1}^{n}\left|\lambda_{k}(A)-\lambda_{k}(B)\right|^{2} \leqslant\|A-B\|_{F}^{2} $$
where
$$\| A - B \|_{F} := \sqrt{\mbox{tr}(A-B)^{H}(A-B)}$$
is equal to
$$\sum_{k=1}^{n} \sigma_{k}^{2}(A-B)$$
where $\sigma_{k}(A-B)$ is the $k$-th largest singular value of matrix $A - B$.
I think this inequality is related to Weyl inequality.
$$ \lambda_{i+j-1}(A+B) \leqslant \lambda_{i}(A)+\lambda_{j}(B) \leqslant \lambda_{i+j-n}(A+B), \quad \forall i+j \geqslant n+1 $$
As its proposition we can prove
$$ \left|\lambda_{k}(A)-\lambda_{k}(B)\right| \leqslant\|A-B\|, \quad \forall k=1,2, \cdots, n $$
Here $\|A-B\|$ is the largest singular value of $(A-B)$.
But this proposition seems no help to the inequality above. So are there other ways to prove it?