I'm having trouble solving this Riemann-Stieltjes integral:
$$\int_{- \pi/4}^{\pi/4} f(x)dg(x),$$ where $$f(x):= \begin{cases} \frac{\sin^4x}{\cos^2x}{} &\text{if }x\ge0, \\{}\\ \frac1{\cos^3x} &\text{if }x<0,\end{cases}$$
and $$g(x)=\begin{cases} \phantom{-} 1+\sin(x) &\text{if }-\pi/4 <x<\pi/4, \\ -1 &\text{otherwise}.\end{cases}$$
I believe the only jump discontinuities are at $-\pi/4$ and $\pi/4$. Which $g=-1$ at both of those points. I'm struggling with the rest. What formula should I be using to compute the integral and what should my answer look like? Thanks for any help!