I have a function like the following,
$p\left( y \right) = \int\limits_x {\int\limits_z {(Q({x^2} + y) + yz + z)dxdz} } $
Where, $Q(x) = \frac{1}{{2\pi }}\int\limits_x^\infty {{e^{ - \frac{{{t^2}}}{2}}}dt} $ and $x,y,z \in R$. I like to find $p(y|x)$ and $p(y|x = 0)$?
For, $p(y|x = 0)$ I put $x=0$. But I think I am wrong.
$p(y|x = 0) = \int\limits_z {(Q(y) + yz + z)dz} $