Different from power of a point solution:
Vectors.
Let $b:=\overrightarrow{AB}$, $\;d:=\overrightarrow{AD}$, $c:=\cos\angle BAD$.
It's given that $|\overrightarrow{AB}|=16$, $\;|\overrightarrow{AD}|=20$, $\;\overrightarrow{AM}=b+\frac19 d$ and $\rho(O,AB)$ $=\rho(O,AD)$ $=OC$ $=OM$.
$\rho(O,AB)=\rho(O,AD)$ implies $AO$ is the bisector of $\angle BAD$ thus
$\overrightarrow{AO}||\left(
\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}+
\frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}
\right)$.
Let $\overrightarrow{AO}=t(5b+4d)$ for some $t$. We find
$\rho(O,AD)=\sqrt{(\overrightarrow{AO})^2-\left(b
\dfrac{\overrightarrow{AO}\cdot b}{|b|^2}\right)^2}$
Then we have
$$
\begin{cases}
(t(5b+4d)-(b+d))^2=(t(5b+4d)-(b+\frac19 d))^2\\
(t(5b+4d)-(b+d))^2=(t(5b+4d))^2-\frac{1}{b^2}\left(t(5b+4d)\cdot b\right)^2
\end{cases}
$$
Having $b^2=16^2$, $\;d^2=20^2$, $\;bd=16\cdot 20\cdot c$ we feed this thing to wolframalpha(1, 2, 3), obtaining
$$
\begin{cases}
(180 c + 180) t = 36 c + 25\\
(10 c^2 + 10) t^2 + c (20 t^2 - 9 t + 1) - 9 t = -\frac{41}{40}
\end{cases}
$$
$$
\left[
\begin{array}{l}
\begin{cases}
c = -\frac{1}{9}\\
t = \frac{21}{160}
\end{cases}\\
\begin{cases}
c = \frac{13}{18}\\
t = \frac{51}{310}
\end{cases}
\end{array}
\right.
$$
Now let $\overrightarrow{AN}=ub+d$, with
$(\overrightarrow{OC})^2=(\overrightarrow{ON})^2$
$$(t(5b+4d)-(b+d))^2=(t(5b+4d)-(ub+d))^2$$
which gives (4, 5, 6) $u=\frac{4}{9}$ in the first case
($\frac{DN}{NC}=\frac{u}{1-u}=\frac{4}{5}$) and $u=\frac{1}{36}$ ($\frac{DN}{NC}=\frac{u}{1-u}=\frac{1}{35}$) in the second case almost for free, alone to say the computations are almost unbearable by hand)