Your inequality equivalent to
$$21(a^2+b^2+c^2) \cdot \frac{a+b+c}{2}\ge \frac52(a+b+c)^3 +9(a^3+b^3+c^3).$$
Using Ravi substitution for $a = x+y,\,b=y+z,\,c=z+x$ with $x,\,y,\,z > 0$ inequality become
$$4(x^3+y^3+z^3)+6xyz \geqslant 3[xy(x+y)+yz(y+z)+zx(z+x)]. \quad (1)$$
From Schur inequality
$$x^3+y^3+z^3 +3xyz \geqslant xy(x+y)+yz(y+z)+zx(z+x),$$
we need to prove
$$2(x^3+y^3+z^3) \geqslant xy(x+y)+yz(y+z)+zx(z+x).$$
Which is true because $x^3+y^3 \geqslant xy(x+y).$
Note. The sum of squares of $(1)$
$$x(y+z-2x)^2+y(z+x-2y)^2+z(x+y-2z)^2 \geqslant 0.$$