In an arbitrary triangle $\triangle ABC$, let $M\in\overline{AC}$ s. t. $|AM|:|MC|=2:1$ and let $N\in\overline{BC}$ s. t. $|BN|:|NC|=1:2$. Let $P$ be the intersection point of the segments $\overline{AN}$ and $\overline{BM}$. In which ratio does the point $P$ divide the segment $\overline{AN}$?
My attempt:
I thought I could apply the intercept theorem to find the ratio in which the point $P$ divides the segment $\overline{BM}$ and then express $\overrightarrow{AP}$ as a linear combination of $\overrightarrow{BM}$ and some vector in $\triangle ABC$ linearly independent of $\overrightarrow{BM}$.
Let $S\in\overline{NC}$ s. t. $\overline{AN}\parallel\overline{MS}$. From the given ratios, it follows:
$|AM|=2\lambda,\ |MC|=\lambda,\ |BN|=\mu, |NC|=2\mu, \ \lambda,\mu\in\Bbb Q$.
By the intercept theorem,
$$\begin{aligned}&|SC|:|NS|=|MC|:|AM|=1:2\\\implies&|SC|=\nu,\ |NS|=2\nu,\ \nu\in\Bbb Q\\\implies&|NC|=|NS|+|SC|=3\nu=2\mu\implies\mu=\frac32\nu\end{aligned}$$
Then
$$\begin{aligned}&|BP|:|PM|=|BN|:|NS|=\frac{\mu}{2\nu}=\frac{\frac32\nu}{2\nu}=\frac34\\\implies&\overrightarrow{PM}=\frac47\overrightarrow{BP}=\frac47\left(\frac13\overrightarrow{AC}-\overrightarrow{BC}\right)\end{aligned}$$
but it doesn't seem I've accomplished anything by finding $\frac{|BP|}{|PM|}.$
It would be perfect if I could find $\frac{|AP|}{|PN|}$ the same way, but there isn't enough information to do that and compare that result with $\overrightarrow{AP}=\alpha\left(\overrightarrow{AC}-\overrightarrow{NC}\right),\ \alpha\in\Bbb Q$.
Another option was to consider a midpoint $T$ of the segment $\overline{NC}$, so $\overrightarrow{BT}=\frac23\overrightarrow{BC}$. Then
$$\overrightarrow{AP}=\alpha\left(\overrightarrow{AB}+\overrightarrow{AT}\right)$$
May I ask for advice on solving this task?
Thank you in advance!