I am trying to solve the problem here: Let $A,B,C,D,$ be commuting $n\times n$ matrices over the field $F$ (it is not given whether any of these matrices are invertible). Show that the determinant of the $2n\times 2n$ matrix $$\begin{bmatrix} A&B\\C&D \end{bmatrix}$$ is $\det(AD-BC)$.
I know that there is an answer given in a paper, which mentions working over $F[x]$. However, I have come up with the following idea:
Motivated by the adjoint formula for the inverse, we get that $$\begin{bmatrix} A&B\\ C&D \end{bmatrix} \begin{bmatrix} D&-B\\ -C&A \end{bmatrix}= \begin{bmatrix} AD-BC & BA-AB\\ CD-DC&AD-BC \end{bmatrix} = \begin{bmatrix} AD-BC & 0\\ 0&AD-BC \end{bmatrix} $$ Hence $$\det \left(\begin{bmatrix} A&B\\ C&D \end{bmatrix}\right)\det\left(\begin{bmatrix} D&-B\\ -C&A \end{bmatrix}\right)= \det(AD-BC)^2$$ But then $$\det\left( \begin{bmatrix} A&B\\ C&D \end{bmatrix}\right)= -\det\left(\begin{bmatrix} B&A\\ D&C \end{bmatrix}\right)= -\det\left(\begin{bmatrix} B&D\\ A&C \end{bmatrix}\right)= \det\left(\begin{bmatrix} D&B\\ C&A \end{bmatrix}\right) $$ Now, thinking of $\det$ in terms of permutations, suppose for a given permutation in the $\det$ sum that we pick $m$ elements in the first $n$ rows from the $-B$ side. Then we must also pick $m$ elements from the last $n$ rows from the $-C$ side; i.e. the sign changes must cancel out. Thus, $$\det\left(\begin{bmatrix} D&B\\ C&A \end{bmatrix}\right)=\det\left(\begin{bmatrix} D&-B\\ -C&A \end{bmatrix}\right)$$ which shows that $$\det \left(\begin{bmatrix} A&B\\ C&D \end{bmatrix}\right)=\pm \det(AD-BC)$$
Is there a way complete the proof from here? All I need to show is that $$\det \left(\begin{bmatrix} A&B\\ C&D \end{bmatrix}\right)\quad\text{ and }\quad \det(AD-BC)$$ have the same sign.