I am trying to prove the following:
There are N balls in a vessel, of which M is red and N - M is white $(0\leq M \leq N)$. From this vessel n balls are drawn at random without being put back. X is the discrete random variable that counts the red balls drawn.
a) Show that:
$$p(X = k)=\frac{\binom Mk \binom {N-M}{n-k}}{\binom Nn}$$ (hypergeometric distribution with the parameters N, M and n).
b) Show that $$E(X) = n \frac{M}{N}$$
I have tried to prove this using the solution of the proof listed at:
Proof that the hypergeometric distribution with large $N$ approaches the binomial distribution.
but I am not sure, if the following is the right solution.
Proof:
$$\begin{eqnarray} \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} &=& \frac{M!}{\color\green{x!} \cdot (M-x)!} \frac{(N-M)!}{\color\green{(n-x)!} \cdot (N-n -(M-x))!} \cdot \frac{\color\green{n!} \cdot (N-n)!}{N!} \\ \\ &=& \color\green{\binom{n}{x}} \cdot \frac{M!/(M-x)!}{N!/(N-x)!} \cdot \frac{(N-M)! \cdot (N-n)!}{(N-x)! \cdot (N-M-(n-x))!} \\ \\ &=& \binom{n}{x} \cdot \frac{M!/(M-x)!}{N!/(N-x)!} \cdot \frac{(N-M)!/(N-M-(n-x))!}{(N-n+(n-x))!/(N-n)! } \\ \\ &=& \binom{n}{x} \cdot \prod_{k=1}^x \frac{(M-x+k)}{(N-x+k)} \cdot \prod_{m=1}^{n-x}\frac{(N-M-(n-x)+m)}{(N-n+m) } \end{eqnarray} $$ weil
$\lim_{N \to \infty} \prod_{k=1}^x \frac{M-x+k}{N-x+k} = \prod_{k=1}^x \lim_{N \to \infty} \frac{M-x+k}{N-x+k} = \prod_{k=1}^x p = p^x$
und
$\lim_{N \to \infty} \prod_{m=1}^{n-x}\frac{(N-M-(n-x)+m)}{(N-n+m) } = \prod_{m=1}^{n-x} (1-p) = (1-p)^{n-x}$ $$\Rightarrow$$ $$p(X = k)= \binom{n}{k} \cdot \prod_{k=1}^x \frac{(M-x+k)}{(N-x+k)} \cdot \prod_{m=1}^{n-x}\frac{(N-M-(n-x)+m)}{(N-n+m) }$$