First, don't switch between cases. Mathematics' symbols are case sensitive.
Further, it is preferred standard to use upper-case for random variables, and lower-case for scalar terms (constants, parameters, et cetera).
Now, by the definition, a moment generating function of random variable $U$ with parameter $t$ is the expectation of random variable $\mathrm e^{tU}$: $$\mathsf M_U(t)=\mathsf E(\mathrm e^{tU})$$
When $U$ is defined as the product of random variables $X$ and $Y$, we therefore have: $$\mathsf M_{XY}(t)=\mathsf E(\mathrm e^{tXY})$$
By the Law of Total Expectation, and the fact that the random variables are independent.
$$\begin{align}\mathsf M_{XY}(t)&=\mathsf E(\mathsf E(\mathrm e^{(tX)Y}\mid X))\\&=(2\pi)^{-1}\int_\Bbb R \mathrm e^{-x^2/2}\int_\Bbb R \mathrm e^{-y^2/2}\cdot\mathrm e^{txy}~\mathrm d y~\mathrm d x\\&=\sqrt{2\pi~}^{-1}\int_\Bbb R \mathrm e^{-x^2/2}\cdot \mathrm e^{t^2x^2/2}~\mathrm d x\\&=\sqrt{2\pi~}^{-1}\int_\Bbb R\mathrm e^{-(1-t^2)x^2/2}~\mathrm d x\\&=\sqrt{1-t^2~~}^{-1}\quad\big[\Re(t^2)<1\big] \end{align}$$
Taking that a few smaller steps at a time.
$$\mathsf M_{XY}(t)=\mathsf E(\mathsf E(\mathrm e^{(tX)Y}\mid X))\\=\mathsf E(\mathsf M_Y(tX))$$
Now, $Y\sim\mathcal{N}(0,1^2)$ (standard normal), so $\mathsf M_Y(s)=\mathrm e^{s^2/2}$. If you do not already have that available$$\begin{align}\mathsf M_Y(s)&=\mathsf E(\mathrm e^{sY})\\&=\int_\Bbb R\mathrm e^{sy}\cdot\sqrt{2\pi~}^{-1}\mathrm e^{-y^2/2}\mathrm d y\\&=\sqrt{2\pi}^{-1}\int_\Bbb R\mathrm e^{sy-y^2/2}\mathrm d y\\&=\mathrm e^{s^2/2}\end{align}$$
... Okay. Anyway, using that:
$$\begin{align}\mathsf M_{XY}(t)&=\mathsf E(\mathrm e^{(tX)^2/2})\\&=\int_\Bbb R\mathrm e^{t^2x^2/2}\cdot\sqrt{ 2\pi~}^{-1}~\mathrm e^{-x^2/2}~\mathrm d x\\&=\sqrt{ 2\pi~}^{-1}\int_\Bbb R\mathrm e^{-(1-t^2)x^2/2}\mathrm d x\\&=\sqrt{1-t^2~}^{-1}\quad\big[\Re(t^2)<1\big]\end{align}$$