The correct probability is $277/800$. One way to calculate it is as follows. First, list the possible $(W,T,L)$ triples with $W + T + L = 6$, $3W + 1T + 0L \ge 12$, and $W, T, L \ge 0$:
$$\{(3,3,0),(4,0,2),(4,1,1),(4,2,0),(5,0,1),(5,1,0),(6,0,0)\}$$
Now the desired probability is
$$\sum_{(W,T,L)} \binom{6}{W,T,L} 0.5^W 0.1^T 0.4^L = \frac{277}{800}.$$
Here, $$\binom{6}{W,T,L}=\frac{6!}{W!T!L!}$$ is a multinomial coefficient, which can also be written as $$\binom{6}{W}\binom{6-W}{T}\binom{6-W-T}{L}=\binom{6}{W}\binom{6-W}{T}\binom{L}{L}=\binom{6}{W}\binom{6-W}{T}.$$
An alternative approach uses recursion. Let $w(p,g)$ denote the probability of at least $p$ points in the next $g$ games. We want to compute $w(12,6)$. By conditioning on the outcome of the next game, we obtain:
$$
w(p,n) =
\begin{cases}
1 &\text{if $p\le 0$ and $g=0$}\\
0 &\text{if $p>0$ and $g=0$}\\
0.5 w(p-3,g-1) + 0.1 w(p-1,g-1) + 0.4 w(p,g-1) &\text{otherwise}
\end{cases}
$$
The resulting values of $w$ are:
$$\begin{matrix}
p\backslash g &0 &1 &2 &3 &4 &5 &6 \\
\hline
0 &1.00000 &1.00000 &1.00000 &1.00000 &1.00000 &1.00000 &1.00000 \\
1 &0.00000 &0.60000 &0.84000 &0.93600 &0.97440 &0.98976 &0.99590 \\
2 &0.00000 &0.50000 &0.76000 &0.88800 &0.94880 &0.97696 &0.98976 \\
3 &0.00000 &0.50000 &0.75000 &0.87600 &0.93920 &0.97056 &0.98592 \\
4 &0.00000 &0.00000 &0.35000 &0.63500 &0.80960 &0.90496 &0.95392 \\
5 &0.00000 &0.00000 &0.25000 &0.51500 &0.71350 &0.84076 &0.91528 \\
6 &0.00000 &0.00000 &0.25000 &0.50000 &0.68950 &0.81675 &0.89606 \\
7 &0.00000 &0.00000 &0.00000 &0.20000 &0.44750 &0.65275 &0.79526 \\
8 &0.00000 &0.00000 &0.00000 &0.12500 &0.32750 &0.53250 &0.69866 \\
9 &0.00000 &0.00000 &0.00000 &0.12500 &0.31250 &0.50250 &0.66263 \\
10 &0.00000 &0.00000 &0.00000 &0.00000 &0.11250 &0.30000 &0.49663 \\
11 &0.00000 &0.00000 &0.00000 &0.00000 &0.06250 &0.20000 &0.37625 \\
12 &0.00000 &0.00000 &0.00000 &0.00000 &0.06250 &0.18750 &0.34625 \\
\end{matrix}
$$
In particular, $w(12,6)=277/800$.