The function $f$ is uniformly continuous on the subset $E_r$ as well.
If contrariwise $E_r$ is unbounded for some $r>0$, then there is a sequence of vectors $x_n$ such that $\Vert x_n\Vert\to\infty$, and $B(x_n,r)\subseteq E$. For all $\delta\in(0,r)$ both $x_n$ and $x'_n(\delta)=x_n(1+\delta/(2\Vert x_n\Vert))$ are then in $E_r$, because $\Vert x_n-x'_n(\delta)\Vert<\delta<r$. But
$$
f(x'_n(\delta))=f(x_n)\left(1+\frac{\delta}{2\Vert x_n\vert}\right)^2,
$$
so
$$
f(x'_n(\delta))-f(x_n)\ge f(x_n)\frac{\delta}{2\Vert x_n\Vert}=\frac{\delta}2 \Vert x_n\Vert.
$$
This set of differences of values of $f$ is unbounded in spite of the arguments being within $\delta$ of each other violating the assumption that the restriction of $f$ to $E_r$ is uniformly continuous.
For an example of unbounded $E$ I proffer $E=\mathbb{Z}\subset\mathbb{R}$ (map this on the $x$-axis, if you want this to work for any $n$). There are no distinct points within distance $<1$ of each other, so uniform continuity of any function is automatic. Yet $E$ is unbounded.