Let $\hat{\operatorname{F}}_{n}$ be a sequence of estimators of a cumulative distribution $\operatorname{F}$:
- If $\displaystyle\sup_{x \in \mathbb{R}} \left\vert\,{\hat{\operatorname{F}}_{n}\left(x\right) - \operatorname{F}\left(x\right)}\,\right\vert \to_{\mathbb{P}} 0,$
- does it hold that for a fixed $\alpha \in \left(0,1\right),\ \hat{\operatorname{F}}^{-1}_{n}\left(\alpha\right) \to_{\mathbb{P}} \operatorname{F}^{-1}\left(\alpha\right)\, ?.$
You can assume all distributions are continuous.