Find total number of distinct $x\in[0,1]$ for which $$\int_{0}^{x}\frac{t^2}{1+t^4}dt=2x-1$$
My multiple attempts are as follows:-
Attempt $1$:
$$t^2=\tan\theta$$ $$2t\dfrac{dt}{d\theta}=\sec^2\theta$$ $$dt=\dfrac{\sec^2\theta}{2\sqrt{\tan\theta}}d\theta$$
$$\int_{0}^{\tan^{-1}x^2}\dfrac{\tan\theta}{1+\tan^2\theta}\dfrac{\sec^2\theta}{2\sqrt{\tan\theta}}d\theta=2x-1$$ $$\int_{0}^{\tan^{-1}x^2}\sqrt{\tan\theta}d\theta=4x-2$$
$$\int_{0}^{\tan^{-1}x^2}\dfrac{\sqrt{\sin\theta}}{\sqrt{\cos\theta}}=4x-2$$ $$\int_{0}^{\tan^{-1}x^2}\dfrac{\sin\theta}{\sqrt{\sin\theta}\sqrt{\cos\theta}}=4x-2$$
$$\cos\theta=y$$ $$\int_{1}^{\frac{1}{\sqrt{1+x^4}}}-\dfrac{dy}{\sqrt{y}\sqrt{\sqrt{1-y^2}}}=4x-2$$
Now it is unsolvable from here.
Attempt $2$:
It seems like this integral is unsolvable, so let's apply Riemann sum
$$\lim_{h\to0}h(f(0)+f(h)+f(2h)+f(3h)\cdots\cdots f(nh))=2x-1$$
$$nh=x$$
$$\lim_{h\to0}h\sum_{r=0}^{n}f(rh)=2x-1$$
$$\lim_{h\to0}h\sum_{r=0}^{n}\dfrac{r^2h^2}{1+r^4h^4}=2x-1$$
If we put the limit $h\rightarrow 0$, then $0\cdot(0+0+0\cdots\cdots)$ where inside the bracket we have indeterminate form as $n\rightarrow \infty$
Now I was not getting how to proceed further.