I have been having extreme difficulties with this integral. I would appreciate any and all help. $$ \int \sqrt{\tan x} ~ \mathrm{d}{x}. $$
-
6Have you tried $tan(x)=u^2$ ? – Jun 10 '14 at 01:34
-
Yes. Using this substitution, I ended with the integral $\displaystyle \int\frac{2u}{u^4+1},du$, and I was unable to solve that. – A is for Ambition Jun 10 '14 at 01:35
-
2Wait, nevermind. I got it. Thanks for the hint. – A is for Ambition Jun 10 '14 at 01:36
-
5@user155812: You should have obtained: $\int \frac{2u^2}{u^4+1}\mathrm{d} u$, after which you use partial fractions, via $(u^4+1) = (u^2+u\sqrt 2 +1)(u^2-u\sqrt 2 +1)$ – Graham Kemp Jun 10 '14 at 01:44
-
4I rolled back the previous edit of the title because the use of "primitive" to mean "indefinite integral" is not universally understood in the mathematical literature. There was no reason to edit it given that the previous title was already unambiguously clear. – heropup Jun 10 '14 at 01:53
-
@heropup Reason : When one wants to open a new tab in the browser by right-clicking the title, those right clicks will not be overridden by the Mathjax context menu. – Jun 10 '14 at 01:54
-
Then include other text in the title, rather than using terminology that may not be understood. – heropup Jun 10 '14 at 01:55
-
2The funny part is that all the answers lead to different closed formulas. – polkovnikov.ph Jun 29 '17 at 12:56
7 Answers
$$y=\int\sqrt{\tan x}\,\mathrm dx$$ $$g=\int\sqrt{\cot x}\,\mathrm dx$$
\begin{align} y+g&=\int\left(\sqrt{\tan x}+\sqrt{\cot x}\right)\,\mathrm dx \\&=\sqrt2\int\frac{\sin x+\cos x}{\sqrt{\sin2x}}\mathrm dx \\& =\sqrt2\int\frac{(\sin x-\cos x)'}{\sqrt{1-(\sin x-\cos x)^2}}\,\mathrm dx\\& =\sqrt2\int\frac{1}{\sqrt{1-u^2}}\,\mathrm du \\& =\sqrt2\sin^{-1}u \\& =\sqrt2\sin^{-1}(\sin x-\cos x)\end{align}
\begin{align} y-g&=\int\left(\sqrt{\tan x}-\sqrt{\cot x}\right)\,\mathrm dx \\& =\sqrt2\int\frac{\sin x-\cos x}{\sqrt{\sin2x}} \,\mathrm dx\\& =-\sqrt2\int\frac{(\sin x+\cos x)'}{\sqrt{(\sin x+\cos x)^2-1}}\,\mathrm dx \\& =-\sqrt2\int\frac{\mathrm ds}{\sqrt{s^2-1}} \\& =-\sqrt2\cosh^{-1}(\sin x+\cos x) \end{align} \begin{align}y&=\frac{(y-g)+(y+g)}2 \\&= \frac{\sqrt2}2(\sin^{-1}(\sin x-\cos x)-\cosh^{-1}(\sin x+\cos x)) + C\end{align}
-
Why?? In the integral $y-g$ You have the substitution $s=\sin x + \cos x$ and the expression $\dfrac{s'}{\sqrt{s^2-1}}dx$ becomes $\dfrac{ds}{\sqrt{s^2-1}}$. Can you explain that step?? – Gabriel Sandoval Dec 15 '17 at 00:56
-
@GabrielSandoval I think it's a typo, it should be just $ds$ instead of $s' ds$ – Itachi May 07 '20 at 05:10
Let $I = \int\sqrt{\tan x}\;\mathrm{d}x$ and $J = \int\sqrt{\cot x}\;\mathrm{d}x$.
Now $$\begin{align}I + J &= \int\left(\sqrt{\tan x} + \sqrt{\cot x}\right) \;\mathrm{d}x \\ &= \sqrt{2} \int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \;\mathrm{d}x \\[5pt] &= \sqrt{2} \int\frac{(\sin x - \cos x)'}{\sqrt{1-(\sin x - \cos x)^2}} \;\mathrm{d}x \\[5pt] &= \sqrt{2} \sin^{-1}(\sin x - \cos x) + \mathbb{C_1} \tag{1} \\ \end{align}$$
and $$\begin{align}I - J &= \int\left(\sqrt{\tan x} - \sqrt{\cot x}\right) \;\mathrm{d}x \\ &= \sqrt{2} \int\frac{(\sin x - \cos x)}{\sqrt{\sin 2x}} \;\mathrm{d}x \\ &= -\sqrt{2} \int\frac{(\sin x + \cos x)'}{\sqrt{(\sin x + \cos x)^2 - 1}} \;\mathrm{d}x \\ &= -\sqrt{2} \ln\left|(\sin x + \cos x) + \sqrt{(\sin x + \cos x)^2 - 1}\right| + \mathbb{C_2} \tag{2} \\ \end{align}$$
Now, adding $(1)$ and $(2)$:
$$I = \frac{1}{\sqrt{2}} \sin^{-1}(\sin x - \cos x) - \frac{1}{\sqrt{2}} \ln\left|\sin x + \cos x + \sqrt{\sin 2x} \vphantom{x^{x^x}} \right| + \mathbb{C}$$
- 69
- 6
- 56,203
-
1
-
2actually Here $\displaystyle I = \int\sqrt{\tan x}dx$ and $\displaystyle J = \int\sqrt{\cot x}dx$ – juantheron Aug 09 '15 at 18:59
-
2It might be more elegant to write the solution as a parallel construct using $\text{arsinh}(\sin(x)+\cos(x))$, rather than the log equivalent. – Mark Viola Mar 03 '16 at 15:56
-
3@MarkViola not really, not everyone (for example highschool students) is acquainted with hyperbolic functions – Archer Jul 19 '18 at 06:59
Let $u = \sqrt{\tan x}$, then $u^2 = \tan x$. Thus $2u\;\mathrm{d}u = \sec^2 x\;\mathrm{d}x = (u^4 + 1)\mathrm{d}x$. Thus $\mathrm{d}x = \dfrac{2u\;\mathrm{d}u}{u^4 + 1}$. So:
$$\int\sqrt{\tan x}\;\mathrm{d}x = \int\frac{2u^2}{u^4+1}\;\mathrm{d}u$$ You can take it from here.
- 78,689
As already mentioned in some answers, let $t=\sqrt{\tan x}\implies t^2=\tan x \implies 2t\mathrm dt=\sec^2x\mathrm dx\implies \mathrm dx=\frac{2t\mathrm dt}{t^4+1}$. Now, we can easily reach the final answer as follows $$I=\int \frac{2t^2\mathrm dt}{t^4+1}=\int \frac{2 \mathrm dt}{t^2+\frac{1}{t^2}}=\int \frac{\left(1+\frac{1}{t^2}\right)+\left(1-\frac{1}{t^2}\right)\mathrm dt}{t^2+\frac{1}{t^2}}$$ $$=\int \frac{\left(1+\frac{1}{t^2}\right)\mathrm dt}{t^2+\frac{1}{t^2}}+\int \frac{\left(1-\frac{1}{t^2}\right)\mathrm dt}{t^2+\frac{1}{t^2}}=\int \frac{\left(1+\frac{1}{t^2}\right)\mathrm dt}{\left(t-\frac{1}{t}\right)^2+2}+\int \frac{\left(1-\frac{1}{t^2}\right)\mathrm dt}{\left(t+\frac{1}{t}\right)^2-2}$$ $$=\int \frac{\left(1+\frac{1}{t^2}\right)\mathrm dt}{\left(t-\frac{1}{t}\right)^2+(\sqrt{2})^2}+\int \frac{\left(1-\frac{1}{t^2}\right)\mathrm dt}{\left(t+\frac{1}{t}\right)^2-(\sqrt{2})^2}$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{t-\frac{1}{t}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln \left(\frac{\left(t+\frac{1}{t}\right)-\sqrt{2}}{\left(t+\frac{1}{t}\right)+\sqrt{2}}\right)+C$$ Now, substituting the value of $t$, we get $$I=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{\tan x}-\frac{1}{\sqrt{\tan x}}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln\left|\frac{\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}-\sqrt{2}}{\sqrt{\tan x}+\frac{1}{\sqrt{\tan x}}+\sqrt{2}}\right|+C$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sqrt{\tan x}-\sqrt{\cot x}}{\sqrt{2}}\right)+\frac{1}{2\sqrt{2}}\ln\left|\frac{\sqrt{\tan x}+\sqrt{\cot x}-\sqrt{2}}{\sqrt{\tan x}+\sqrt{\cot x}+\sqrt{2}}\right|+C$$ $$=\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{\sin x-\cos x}{\sqrt{\sin 2x}}\right)+\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin x+\cos x-\sqrt{\sin 2x}}{\sin x+\cos x+\sqrt{\sin 2x}}\right|+C$$
- 8,530
- 38,565
A slight improvement: instead of $u^2=\tan\theta$, let $u^2=2\tan\theta$. This gives $$I=\frac1{\sqrt2}\int \frac{4u^2}{u^4+4}\,du =\frac1{\sqrt2}\int \frac{u}{u^2-2u+2}-\frac{u}{u^2+2u+2}\,du\ .$$ Observe that except for the constant out the front, no surds are involved. Now substitute $v=u-1$ for the first bit and $v=u+1$ for the second bit. You will need to be careful with the algebra, but it's not all that bad.
- 84,708
- 9
- 96
- 166
Hint:
Let $\sqrt{\tan x}=u$, $\quad \frac{1}{2\sqrt{\tan x}}\sec^2 x dx=du$, $\frac{1+u^4}{2u}\ dx=du$ $$\int \sqrt{\tan x}\ dx=\int u \frac{2u}{1+u^4}\ du=\int \frac{2u^2}{1+u^4}\ du$$ Now, make partial fractions $$\frac{2u^2}{1+u^4}=\frac{u^2}{(u^2+u\sqrt 2+1)(u^2-u\sqrt 2+1)}$$ Carry on to get the answer
- 1,651
Just another way to do it. $$I=\int\sqrt{\tan x}\,dx = \int\frac{2u^2}{u^4+1}\,du=\int \left(\frac{1}{u^2+a}+\frac{1}{u^2-a} \right)\,du$$ where $a=i$ $$I=\frac 1{\sqrt a}\left(\tan ^{-1}\left(\frac{u}{\sqrt{a}}\right)-\tanh ^{-1}\left(\frac{u}{\sqrt{a}}\right)\right)=-\frac{1-i}{\sqrt{2}}\left(\tan ^{-1}\left((-1)^{3/4} u\right)-\tanh ^{-1}\left((-1)^{3/4} u\right)\right)$$
- 289,558