How to determine how many solutions does each of the following systems have in $\mathbb{R}^3$? (Infinitely many solutions/Unique solutions/No Solutions)
a) $\begin{cases}f + g + h = 13\\ f – h = −2\end{cases}$
b) $\begin{cases}3x + 4y – z = 8\\ 5x – 2y + z = 4\\ 2x – 2y + z = 1\end{cases}$
c) $\begin{cases}S – T – W = 8\\ 5S + 2T + 4W = 0\\ –3S + 3T + 3W =20\end{cases}$