Prove or disprove:
if $f(x)\ge 0,\forall x\in [-\pi,\pi]$,show that $$\left(\int_{-\pi}^{\pi}f(x)\sin{x}dx\right)^2+\left(\int_{-\pi}^{\pi}f(x)\cos{x}dx\right)^2\le\dfrac{\pi}{2}\int_{-\pi}^{+\pi}f^2(x)dx$$
I can prove this if $2\pi$ takes the place of $\dfrac{\pi}{2}$
because use Cauchy-schwarz inequality we have $$\left(\int_{-\pi}^{\pi}f(x)\sin{x}dx\right)^2\le\int_{-\pi}^{\pi}\sin^2{x}dx\int_{-\pi}^{\pi}f^2(x)dx$$
$$\left(\int_{-\pi}^{\pi}f(x)\cos{x}dx\right)^2\le\int_{-\pi}^{\pi}\cos^2{x}dx\int_{-\pi}^{\pi}f^2(x)dx$$ add this two inequality, we have $$\begin{align*}\left(\int_{-\pi}^{\pi}f(x)\sin{x}dx\right)^2+\left(\int_{-\pi}^{\pi}f(x)\cos{x}dx\right)^2 &\le \int_{-\pi}^{\pi}f^2(x)dx\int_{-\pi}^{\pi}(\sin^2{x}+\cos^2{x})dx\\ &=2\pi\int_{-\pi}^{+\pi}f^2(x)dx\end{align*}$$
see this Discrete form of inequality:Prove this inequality with Cauchy-Schwarz inequality
So far, I haven't found any counterexamples,such $f(x)=1,\sin{x}+1$ it such this inequality