Question:
Let $|a|<1$ and let $\left(x_k\right)_{k\ge 1}$ be a sequence that converges to zero. Define a sequence $(y_k)_{k\ge 0}$ given by the following relation
$y_k=x_k+ay_{k-1}$.
Determine whether $y_k\to 0$.
My attempt: It can be shown that $y_k=x_k+ax_{k-1}+a^2x_{k-2}+\dotsb+a^{k-1}x_1+a^ky_0$ for each $k\ge 1$. The first and last term of RHS goes to zero. But till now I am unable to estimate the terms
$ax_{k-1}+a^2x_{k-2}+\dotsb+a^{k-1}x_1$ whether it converges to zero. Help is appreciated.