As @conditionalMethod pointed out, for $n$ even, one of the denominators is zero.
If we exclude $2i-n=0$ in the summation, the limit exits and equals to some proper Riemann integral. In other words, usual Riemann integral is enough to deal with the problem, and improper integral is not necessarily introduced.
Also, from @conditionalMethod's comments on @user's answer, we may need to deal with the term $\frac{3}{n}$ carefully.
Let us prove that
\begin{align}
&\lim_{n\to \infty} \sum_{i=1, \ 2i-n\ne 0}^n \frac{n^3(2i-3)}{(n^2-\sqrt{2n^4+i^2n^2} + in)(2n^2-i^2)^{3/2}}\\
=\ & \int_0^1 \frac{1+x+\sqrt{2+x^2}}{(2-x^2)^{3/2}} \mathrm{d}x \\
& + \int_0^1 \frac{1}{2(1-2x)}
\Big(\frac{1 + (1-x) + \sqrt{2 + (1-x)^2}}{(2-(1-x)^2)^{3/2}}
- \frac{1 + x + \sqrt{2 + x^2}}{(2-x^2)^{3/2}} \Big)\mathrm{d} x.
\end{align}
Remark: The second integral is a proper Riemann integral rather than an improper integral,
since the integrand is continuous on $[0, 1]$ (it is obvious if it is rewritten to reduce $1-2x$,
although the expression hence becomes complicated).
Proof: First, we have
\begin{align}
&\sum_{i=1, \ 2i-n\ne 0}^n \frac{n^3(2i-3)}{(n^2-\sqrt{2n^4+i^2n^2} + in)(2n^2-i^2)^{3/2}}\\
=\ & \sum_{i=1, \ 2i-n\ne 0}^n \frac{n^3(2i-n)}{(n^2-\sqrt{2n^4+i^2n^2} + in)(2n^2-i^2)^{3/2}}\\
&\qquad\qquad + \sum_{i=1, \ 2i-n\ne 0}^n \frac{n^3(n-3)}{(n^2-\sqrt{2n^4+i^2n^2} + in)(2n^2-i^2)^{3/2}}\\
=\ & \sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n+i +\sqrt{2n^2+i^2})}{(2n^2-i^2)^{3/2}}
+ \sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+i+\sqrt{2n^2+i^2})}{(2i-n)(2n^2-i^2)^{3/2}}.
\end{align}
Second, we have
\begin{align}
&\lim_{n\to \infty} \sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n+i +\sqrt{2n^2+i^2})}{(2n^2-i^2)^{3/2}} \\
= \ & \lim_{n\to \infty} \frac{1}{n}\sum_{i=1}^n \frac{1 + \frac{i}{n} + \sqrt{2 + (\frac{i}{n})^2}}{(2 - (\frac{i}{n})^2)^{3/2}}\\
= \ & \int_0^1 \frac{1+x+\sqrt{2+x^2}}{(2-x^2)^{3/2}} \mathrm{d}x.
\end{align}
Third, since (with substitution $i \rightarrow n-i$)
\begin{align}
&\sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+i+\sqrt{2n^2+i^2})}{(2i-n)(2n^2-i^2)^{3/2}}\\
=\ & \sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+(n-i)+\sqrt{2n^2+(n-i)^2})}{(2(n-i)-n)(2n^2-(n-i)^2)^{3/2}}\\
&\quad + \frac{(n-3)(1+\sqrt{2})}{2n^2 \sqrt{2}} + \frac{(n-3)(2+\sqrt{3})}{n^2},
\end{align}
we have
\begin{align}
&\sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+i+\sqrt{2n^2+i^2})}{(2i-n)(2n^2-i^2)^{3/2}}\\
=\ &
\frac{1}{2}\sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+i+\sqrt{2n^2+i^2})}{(2i-n)(2n^2-i^2)^{3/2}}\\
&\quad + \frac{1}{2} \sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+(n-i)+\sqrt{2n^2+(n-i)^2})}{(n-2i)(2n^2-(n-i)^2)^{3/2}}\\
&\quad + \frac{1}{2} \frac{(n-3)(1+\sqrt{2})}{2n^2 \sqrt{2}} + \frac{1}{2}\frac{(n-3)(2+\sqrt{3})}{n^2}\\
=\ & \sum_{i=1, \ 2i-n\ne 0}^n
\frac{n(n-3)}{2(n-2i)}\Big(\frac{n+(n-i)+\sqrt{2n^2+(n-i)^2}}{(2n^2-(n-i)^2)^{3/2}} - \frac{n+i+\sqrt{2n^2+i^2}}{(2n^2-i^2)^{3/2}}\Big)\\
&\quad + \frac{1}{2} \frac{(n-3)(1+\sqrt{2})}{2n^2 \sqrt{2}} + \frac{1}{2}\frac{(n-3)(2+\sqrt{3})}{n^2}\\
=\ & \frac{n-3}{n} \cdot \frac{1}{n} \sum_{i=1, \ 2i-n\ne 0}^n
f\big(\frac{i}{n}\big) + \frac{1}{2} \frac{(n-3)(1+\sqrt{2})}{2n^2 \sqrt{2}} + \frac{1}{2}\frac{(n-3)(2+\sqrt{3})}{n^2}\\
=\ & \frac{n-3}{n} \cdot \frac{1}{n} \sum_{i=1}^n
f\big(\frac{i}{n}\big) - \frac{n-3}{n^2}f\big(\frac{1}{2}\big)\cdot \mathrm{mod}(n-1,2)\\
&\quad + \frac{1}{2} \frac{(n-3)(1+\sqrt{2})}{2n^2 \sqrt{2}} + \frac{1}{2}\frac{(n-3)(2+\sqrt{3})}{n^2}
\end{align}
where $\mathrm{mod}(n-1,2) = 1$ is $n$ is even and $\mathrm{mod}(n-1,2) = 0$ is $n$ is odd, and
$$f(x) = \frac{1}{2(1-2x)}
\Big(\frac{1 + (1-x) + \sqrt{2 + (1-x)^2}}{(2-(1-x)^2)^{3/2}}
- \frac{1 + x + \sqrt{2 + x^2}}{(2-x^2)^{3/2}} \Big).$$
Here we have used the fact that $f(x)$ is continuous on $[0, 1]$ with $f(\frac{1}{2})=\frac{328}{1029}\sqrt{7}$.
Thus, we have
$$\lim_{n\to \infty} \sum_{i=1, \ 2i-n\ne 0}^n \frac{n(n-3)(n+i+\sqrt{2n^2+i^2})}{(2i-n)(2n^2-i^2)^{3/2}}
= \int_0^1 f(x) dx.$$
The desired result follows. This completes the proof.