$$\int_a^b{f(x)}dx$$ let $u=k(x),$ where $ k(a)=0, k(b)=0 \\ k^{-1}(u)=x \\ (k^{-1})'(u) du =dx$
$$\int_{k(a)}^{k(b)} f(k^{-1}(u))\times (k^{-1})'(u) du$$ $$=\int_{0}^{0} f(k^{-1}(u))\times (k^{-1})'(u) du$$ $$=0$$
If this is correct, then every integral would equal to zero, thus it has to be incorrect.