If $f:V\to V$, is a linear map, I use the notation $(f-a)(x):=f(x)-ax$ and $(f-a)(f-b)$ for $p(f)$ where $p(x)=(x-a)(x-b)\in \mathbb R[x]$, moreover "multiplication" of linear maps means "composition" (in finite dimension, one might think of $f$ as a square matrix and then it is matrix-multiplication).
Let $V$ a vector space (possibly of infinite dimension). Let $f:V\to V$ a linear map and let $a\neq b$. Prove that $$\ker [(f-a)(f-b)]=\ker(f-a)\oplus \ker(f-b).$$
The fact that $\ker(f-a)+\ker(f-b)$ is a direct sum is clear. Also, for the inclusion $\ker(f-a)\oplus\ker(f-b)\subset \ker[(f-a)(f-b)]$ I did : let $u=v+w$ where $v\in \ker(f-a)$ and $w\in \ker(f-b)$. Then it's easy to prove that $u\in \ker[(f-a)(f-b)]$.
For the converse inclusion, I have some difficulties.
Let $u\in V$ s.t. $$(f-a)(f-b)(u)=0.$$
Try
Let $u=(u-v)+v$ where $v\in \ker(f-b)$. Then $$0=(f-a)(f-b)(u)=(f-a)(f-b)(u-v)=(f-b)(f-a)(u-v),$$ now, I suppose that $u-v\in \ker(f-a)$, but I'm not sure that the fact that $(u-v)\notin \ker(f-b)$ and $(f-b)(f-a)(u-v)=0$ implies that $u-v\in \ker(f-a).$