The answer linked to in the comments is extremely elegant and gives the exact right answer of $\ln(2)\approx .693$. For those of us that aren't that smart, I figured I'd give a way you could get provable and decent upper and lower bounds fairly quickly. Notice that in your notation, the events $\{X_i >1\}$ are mutually disjoint, hence
\begin{equation}
\Pr(\sup_{i} X_i>1)=\sum_{i=1}^{\infty} \Pr(X_i>1).
\end{equation}
Obviously $\Pr(X_1>1)=1/2$. It's not too hard to see that
\begin{align*}
\Pr(X_2>1)&=\frac{1}{2}\int_0^1 dx_1\bigg(\int_1^{2-x_1}\frac{1}{2-x}dx_2\bigg)\\
&=\frac{1}{2}\int_0^1 \frac{1-x_1}{2-x_1}dx\\
&=\frac{1}{2}(1-\ln(2))\\
&\approx .1530.
\end{align*}
Similarly,
\begin{align*}
\Pr(X_3>1)&=\frac{1}{2}\int_0^1 dx_1\bigg(\int_0^{1-x_1-x_2}\frac{1}{2-x}dx_2\bigg(\int_1^{2-x_1-x_2}\frac{1}{2-x_1-x_2}dx_3\bigg)\\
&=\frac{1}{2}-\frac{1}{4}\ln(2)(2+\ln(2))\\
&\approx .0333.
\end{align*}
(I used Wolfram Alpha...) In general, one has
\begin{equation}
\Pr(X_n>1)=\frac{1}{2}\int_0^1 dx_1\bigg(\int_0^{1-x_1} \frac{1}{2-x_1}dx_2\bigg(\ldots \bigg(\int_1^{2-x_1-\ldots-x_{x_{n-1}}} \frac{1}{2-x_1-\ldots-x_{n-1}}dx_n\bigg)\ldots\bigg).
\end{equation}
Using Wolfram again, you can find that
\begin{equation}
\Pr(X_4>1)=\frac{1}{12}(6-\ln(2))(6+\ln^2(2)+\ln(8))\approx .0056.
\end{equation}
This tells us already that
\begin{equation}
0.6919=.5+.1530+.0333+.0056\leq \Pr(\sup_i X_i>1).
\end{equation}
Now, to get an upper bound, simply note that for any $n$,
\begin{equation}
\Pr(X_i>1, i>n)\leq \Pr(\sum_{i=1}^n X_i<1),
\end{equation}
using the fact that the first left hand side event implies the right hand side event.
Notice then that
\begin{align}
\Pr(\sum_{i=1}^n X_i<1)&=\frac{1}{2}\int_0^1 dx_1\bigg(\int_0^{1-x_1} \frac{1}{2-x_1}dx_2\bigg(\ldots \bigg(\int_0^{1-x_1-\ldots-x_{x_{n-1}}} \frac{1}{2-x_1-\ldots-x_{n-1}}dx_n\bigg)\ldots\bigg)\\
&=\frac{1}{2}\int_0^1 dx_1\bigg(\int_0^{1-x_1} \frac{1}{2-x_1}dx_2\bigg(\ldots \bigg(\int_1^{2-x_1-\ldots-x_{x_{n-1}}} \frac{1}{2-x_1-\ldots-x_{n-1}}dx_n\bigg)\ldots\bigg)\\
&=\Pr(X_n>1),
\end{align}
where we use the fact that the only difference is the last integrand is shifted, but the function does not depend on $x_n$. In particular, for all $n$, we have
\begin{equation}
\sum_{i=1}^n \Pr(X_i>1)\leq \Pr(\sup_i X_i>1)\leq \sum_{i=1}^{n} \Pr(X_i>1) +\Pr(X_n>1).
\end{equation}
Applying this with $n=4$, you get
\begin{equation}
.6919\leq \Pr(\sup_i X_i>1) \leq .6975.
\end{equation}