1

Suppose $A\in \mathbb{R}^{n\times n}$ is invertible, $B,C\in\mathbb{R}^{n\times m}$ and $\left(I+C^{T}A^{-1}B\right)^{-1}$ exists. Show that $$ \begin{equation} (A+BC^{T})^{-1}=A^{-1}-A^{-1}B\left(I+C^{T}A^{-1}B\right)^{-1}C^{T}A^{-1} \end{equation} $$

I am having a lot of trouble with what appears to be simple algebraic manipulation. I have tried to approach this problem in many different ways (too many to write out), but here is the approach I used that seems to have got me the "furthest":

$$ \begin{align} A^{-1} &= \left(A+BC^{T}\right)^{-1}\left(A+BC^{T}\right)A^{-1} \\ &= \left(A+BC^{T}\right)^{-1}\left(I + BC^{T}A^{-1}\right) \\ &= \left(A+BC^{T}\right)^{-1} + \left(A+BC^{T}\right)^{-1}BC^{T}A^{-1} \\ \\ A^{-1} - \left(A+BC^{T}\right)^{-1}&= \left(A+BC^{T}\right)^{-1}BC^{T}A \\ \left(A+BC^{T}\right)^{-1}&=A^{-1} - \left(A+BC^{T}\right)^{-1}BC^{T}A^{-1} \\ &= A^{-1}-A^{-1}A\left(A+BC^{T}\right)^{-1}BC^{T}A^{-1} \\ &= A^{-1} - A^{-1}\left[\left(A+BC^{T}\right)A^{-1}\right]^{-1}BC^{T}A^{-1} \\ &= A^{-1}-A^{-1}\left(I+BC^{T}A^{-1}\right)^{-1}BC^{T}A^{-1} \end{align} $$

Andrew
  • 105

0 Answers0