The extended least square estimates this polynomial equation:
$$A(q)y(t) = B(q)y(t) + C(q)e(t)$$
By using:
$$\epsilon(t) = y(t) - \phi^T(t-1)\hat \theta(t-1)$$ $$\hat \theta(t) = \theta(t-1) + P(t)\theta(t-1)\epsilon$$ $$P^{-1}(t) = P^{-1}(t-1) + \phi(t-1)\phi^T(t-1)$$
Is there any way for me to avoid computing the inverse of $P(t)$?
I have created a question for a long time ago about Recursive Least Sqares and Extended Least Squares is not the same as Recursive Least Squares. Here is an example how to update the $P$ matrix.
>> P = rand(5,5);
>> phi = rand(5,1);
>> A = inv(P) + phi*phi' % Extended Least Squares P update
A =
-2.02448 0.59870 0.95827 0.95451 -0.83298
1.58485 3.63862 -0.11856 1.79290 -3.02662
5.15738 -6.45723 1.96129 0.62033 3.42288
12.20361 -7.25674 2.19398 7.91516 -2.78538
-13.93087 11.70728 -3.85160 -7.97718 4.38994
>> B = P - (P*phi*phi'*P)/(1+phi'*P*phi) % Recursive Least Squares P update
B =
-0.1947838 0.2169201 0.1270665 -0.0609621 -0.0251604
0.0503370 0.2747009 0.1513839 0.0038340 0.0833390
0.4232505 0.4797054 0.4333511 -0.3326665 -0.1379224
0.2636843 -0.2302613 -0.1209715 0.3929447 0.2349241
0.0981407 -0.0417592 0.1598960 0.2184892 0.2315819
Ais the inverse of the updateP, namelyinv(A)should be equal toB. – Kwin van der Veen Jun 27 '19 at 15:55