Recursive least squares tries to identify the parameter $\theta$ which satisfies the following relation
$$
z = \phi^\top\,\theta, \tag{1}
$$
where $z$ and $\phi$ are known. When assuming that $n$ data points are known then equation $(1)$ can be extended to the following equation
$$
\underbrace{
\begin{bmatrix}
z_1 \\ z_2 \\ \vdots \\ z_n
\end{bmatrix}
}_{Z_n} =
\underbrace{
\begin{bmatrix}
\phi^\top_1 \\ \phi^\top_2 \\ \vdots \\ \phi^\top_n
\end{bmatrix}
}_{\Phi_n} \theta. \tag{2}
$$
The normal least squares solution for $\theta$ would then be
$$
\hat{\theta}_n = \left(\Phi_n^\top\,\Phi_n\right)^{-1}\,\Phi_n^\top\,Z_n \tag{3}
$$
Using the definition of $Z_n$ and $\Phi_n$ in equation $(2)$ then $Z_{n+1}$ and $\Phi_{n+1}$ can be written as
$$
Z_{n+1} =
\begin{bmatrix}
Z_n \\ z_{n+1}
\end{bmatrix}, \quad
\Phi_{n+1} =
\begin{bmatrix}
\Phi_n \\ \phi_{n+1}^\top
\end{bmatrix},
$$
so the least squares solution using $n+1$ points can also be written as
$$
\begin{align}
\hat{\theta}_{n+1} &= \left(\Phi_{n+1}^\top\,\Phi_{n+1}\right)^{-1}\,\Phi_{n+1}^\top\,Z_{n+1}, \\
&= \left(\Phi_n^\top\,\Phi_n + \phi_{n+1}\,\phi_{n+1}^\top\right)^{-1}\,\left(\Phi_n^\top\,Z_n + \phi_{n+1}\,z_{n+1}\right).
\end{align}
\tag{4}
$$
By defining $P_n = \left(\Phi_n^\top\,\Phi_n\right)^{-1}$ then, using the Woodbury matrix identity, $P_{n+1}$ can be written as
$$
\begin{align}
P_{n+1} &= \left(\Phi_n^\top\,\Phi_n + \phi_{n+1}\,\phi_{n+1}^\top\right)^{-1}, \\
&= P_n - P_n\,\phi_{n+1}\,\left(1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}\right)^{-1}\,\phi_{n+1}^\top\,P_n,
\end{align}
$$
since $1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}$ is scalar it can also be written as
$$
P_{n+1} = P_n - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top\,P_n}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}} = \left(I - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\right) P_n. \tag{5}
$$
Substituting equation $(5)$ into equation $(4)$ gives
$$
\hat{\theta}_{n+1} = \left(I - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\right) P_n\,\left(\Phi_n^\top\,Z_n + \phi_{n+1}\,z_{n+1}\right).
$$
By substituting $P_n$ into equation $(3)$ then it can be shown that $\hat{\theta}_n = P_n\,\Phi^\top_n\,Z_n$, so the above equation can also be written as
$$
\hat{\theta}_{n+1} = \left(I - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\right) \left(\hat{\theta}_n + P_n\,\phi_{n+1}\,z_{n+1}\right),
$$
which does no longer contain $Z_n$ or $\Phi_n$, which makes it recursive. Expanding the brackets of the above equation and simplifying the resulting equation gives
$$
\begin{align}
\hat{\theta}_{n+1} &= \hat{\theta}_n + P_n\,\phi_{n+1}\,z_{n+1} - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top \left(\hat{\theta}_n + P_n\,\phi_{n+1}\,z_{n+1}\right)}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}, \\
&= \hat{\theta}_n + P_n\,\phi_{n+1}\left(z_{n+1} - \frac{\phi_{n+1}^\top \hat{\theta}_n}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}} - \frac{\phi_{n+1}^\top\,P_n\,\phi_{n+1}}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\,z_{n+1}\right), \\
&= \hat{\theta}_n + P_n\,\phi_{n+1}\left(\frac{z_{n+1}}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}} - \frac{\phi_{n+1}^\top \hat{\theta}_n}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\right), \\
&= \hat{\theta}_n + \frac{P_n\,\phi_{n+1}}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}} \left(z_{n+1} - \phi_{n+1}^\top\,\hat{\theta}_n\right). \\
\end{align}
$$
There are common terms in both $P_{n+1}$ and $\hat{\theta}_{n+1}$, so in order to avoid calculating the same thing twice one often defines the update law as
$$
\left\{
\begin{align}
K_n &= \frac{P_n\,\phi_{n+1}}{1 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}} \\
P_{n+1} &= P_n - K_n\,\phi_{n+1}^\top\,P_n \\
\hat{\theta}_{n+1} &= \hat{\theta}_n + K_n \left(z_{n+1} - \phi_{n+1}^\top\,\hat{\theta}_n\right)
\end{align}
\right. \tag{6}
$$
Often however a forgetting factor is used as well, which weighs "old data" less and less the "older" it gets. Basically the solution to the least squares in equation $(3)$ is turned into a weighted least squares with exponentially decaying weights. One way of writing this is by changing equation $(2)$ into
$$
\underbrace{
\begin{bmatrix}
\alpha^{n-1}\,z_1 \\ \alpha^{n-2}\,z_2 \\ \vdots \\ z_n
\end{bmatrix}
}_{Z_n} =
\underbrace{
\begin{bmatrix}
\alpha^{n-1}\,\phi^\top_1 \\ \alpha^{n-2}\,\phi^\top_2 \\ \vdots \\ \phi^\top_n
\end{bmatrix}
}_{\Phi_n} \theta, \tag{7}
$$
where it can be noted that $0<\alpha\leq1$. An equivalent solution would be to use a diagonal weighting matrix with $\begin{bmatrix}\alpha^{n-1} & \alpha^{n-2} & \cdots & 1\end{bmatrix}$ on its diagonal. By now using the definition of $Z_n$ and $\Phi_n$ in equation $(7)$ then $Z_{n+1}$ and $\Phi_{n+1}$ can be written as
$$
Z_{n+1} =
\begin{bmatrix}
\alpha\,Z_n \\ z_{n+1}
\end{bmatrix}, \quad
\Phi_{n+1} =
\begin{bmatrix}
\alpha\,\Phi_n \\ \phi_{n+1}^\top
\end{bmatrix}.
$$
The end result of equation $(4)$ now becomes
$$
\hat{\theta}_{n+1} = \left(\alpha^2\,\Phi_n^\top\,\Phi_n + \phi_{n+1}\,\phi_{n+1}^\top\right)^{-1}\,\left(\alpha^2\,\Phi_n^\top\,Z_n + \phi_{n+1}\,z_{n+1}\right). \tag{8}
$$
Similarly equation $(5)$ becomes
$$
P_{n+1} = \alpha^{-2}\,\left(P_n - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top\,P_n}{\alpha^2 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\right) = \alpha^{-2}\,\left(I - \frac{P_n\,\phi_{n+1}\,\phi_{n+1}^\top}{\alpha^2 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\right)\,P_n. \tag{9}
$$
By substituting equation $(9)$ into equation $(8)$ and expanding and simplifying it yields
$$
\hat{\theta}_{n+1} = \hat{\theta}_n + \frac{P_n\,\phi_{n+1}}{\alpha^2 + \phi_{n+1}^\top\,P_n\,\phi_{n+1}}\,\left(z_{n+1} - \phi_{n+1}^\top\,\hat{\theta}_n\right). \tag{10}
$$
Since the weight factor $\alpha$ only appears squared one often defines the forgetting factor parameter as $\lambda = \alpha^2$. By again factoring out the common term then the following update law can be obtained
$$
\left\{
\begin{align}
K_n &= \frac{P_n\,\phi_{n+1}}{\lambda + \phi_{n+1}^\top\,P_n\,\phi_{n+1}} \\
P_{n+1} &= \lambda^{-1} \left(P_n - K_n\,\phi_{n+1}^\top\,P_n\right) \\
\hat{\theta}_{n+1} &= \hat{\theta}_n + K_n \left(z_{n+1} - \phi_{n+1}^\top\,\hat{\theta}_n\right)
\end{align}
\right. \tag{11}
$$