Suppose $X_1,X_2,...,X_n$ is a random sample from $U(0,\theta)$. We need to construct a likelihood ratio size $\alpha$ test to test $H_0:\theta=\theta_0$ against $H_{1}: \theta \neq \theta_{0}$
My approach:
$\sup_{\theta}\frac{1}{\theta^n}= \frac{1}{(X_{(n)})^n}$ Thus the likelihood ratio is : $\lambda=(\frac{X_{(n)}}{\theta_0})^n$ Now if $X_{(n)}<\theta_0$ , then $\lambda$ is a decreasing function of $X_{(n)}$.So the LRT size $\alpha$ test criterion $\lambda<c $ is then equivalent to $X_{(n)} >k$ and if $X_{(n)}>\theta_0$ , then $\lambda$ is an increasing function of $X_{(n)}$ and the LRT criterion yields $ X_{(n)}<k'$ Now is this correct? How will I find $k,k'$ for a fixed size $\alpha$?