$\mathrm{tr}(A^2)=\sum_{i} {[A^2 ]}_{i,i}$
$=\sum_{i} \sum_j A_{i,j}\cdot A_{j,i}$
$=\sum_{i,j, j\neq i}2A_{i,j}\cdot A_{j,i}+\sum_{i,j, j= i}A_{i,j}\cdot A_{j,i}$
$=\sum_{i,j, j\neq i, i\gt j}2A_{i,j}\cdot A_{j,i}+\sum_{i}A_{i,i}^2$
$\mathrm{tr}(A^TA)=\sum_{i} {[A^TA]}_{i,i}$
$=\sum_{i} \sum_j A^T_{i,j}\cdot A_{j,i}$
$=\sum_{i} \sum_j A_{j,i}\cdot A_{j,i}$
$=\sum_{i,j}A_{j,i}^2$
$$\mathrm{tr}(A^TA)-tr(A^2)=\sum_{i,j,i\neq j,i\gt j}(A_{j,i}^2+A_{i,j}^2-2A_{i,j}\cdot A_{j,i})$$
$$=\sum_{i,j,i\neq j}(A_{j,i}-A_{i,j})^2 \ge 0$$