If $X$ is a Banach space, then a Schauder basis of $X$ is a subset $B$ of $X$ such that every element of $X$ can be written uniquely as an infinite linear combination of elements of $B$. My question is, if $A$ is a linearly independent subset of $X$ such that the closure of the span of $A$ equals $X$, then is $A$ necessarily a Schauder basis of $X$?
If not, does anyone know of any counterexamples?